Different JFET Designs on Conduction and Short-Circuit Capability for 3.3 kV Planar-Gate Silicon Carbide MOSFETs

Both large current capability and strong short-circuit (SC) ruggedness are necessary for 3.3 kV SiC MOSFETs to improve system efficiency and reduce costs in industrial and traction applications. In this paper, the effects of Junction Field Effect Transistor (JFET) region width and JFET doping (JD) o...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Ximing Chen, Xuan Li, Yafei Wang, Hong Chen, Caineng Zhou, Chao Zhang, Chengzhan Li, Xiaochuan Deng, Yudong Wu, Bo Zang
Formato: article
Lenguaje:EN
Publicado: IEEE 2020
Materias:
Acceso en línea:https://doaj.org/article/71ecac5e3fd54c4b87308cab2710b01c
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:71ecac5e3fd54c4b87308cab2710b01c
record_format dspace
spelling oai:doaj.org-article:71ecac5e3fd54c4b87308cab2710b01c2021-11-19T00:01:58ZDifferent JFET Designs on Conduction and Short-Circuit Capability for 3.3 kV Planar-Gate Silicon Carbide MOSFETs2168-673410.1109/JEDS.2020.3010951https://doaj.org/article/71ecac5e3fd54c4b87308cab2710b01c2020-01-01T00:00:00Zhttps://ieeexplore.ieee.org/document/9146623/https://doaj.org/toc/2168-6734Both large current capability and strong short-circuit (SC) ruggedness are necessary for 3.3 kV SiC MOSFETs to improve system efficiency and reduce costs in industrial and traction applications. In this paper, the effects of Junction Field Effect Transistor (JFET) region width and JFET doping (JD) on conduction and SC capability of the 3.3 kV planar-gate SiC MOSFETs are systematically investigated by experiments and simulations. When the JFET width (W<sub>JFET</sub>) of device without JD is smaller, the positive temperature coefficient of the special on-resistance (R<sub>on,SP</sub>) is larger. The JD is effective to improve the R<sub>on,SP</sub>, but excessive electric field in gate oxide induced by JD should be paid more attention. The optimization of W<sub>JFET</sub> can be used to improve both R<sub>on,SP</sub> and short circuit withstanding time (SCWT) at the same time. The drain-source current (I<sub>ds</sub>) and SCWT of the optimized devices are 50 A and more than <inline-formula> <tex-math notation="LaTeX">$20~{\mu }\text{s}$ </tex-math></inline-formula>, respectively, which is state-of-the-art for 3.3 kV SiC MOSFETs.Ximing ChenXuan LiYafei WangHong ChenCaineng ZhouChao ZhangChengzhan LiXiaochuan DengYudong WuBo ZangIEEEarticleSiC MOSFETJFET widthJFET dopingshort circuitElectrical engineering. Electronics. Nuclear engineeringTK1-9971ENIEEE Journal of the Electron Devices Society, Vol 8, Pp 841-845 (2020)
institution DOAJ
collection DOAJ
language EN
topic SiC MOSFET
JFET width
JFET doping
short circuit
Electrical engineering. Electronics. Nuclear engineering
TK1-9971
spellingShingle SiC MOSFET
JFET width
JFET doping
short circuit
Electrical engineering. Electronics. Nuclear engineering
TK1-9971
Ximing Chen
Xuan Li
Yafei Wang
Hong Chen
Caineng Zhou
Chao Zhang
Chengzhan Li
Xiaochuan Deng
Yudong Wu
Bo Zang
Different JFET Designs on Conduction and Short-Circuit Capability for 3.3 kV Planar-Gate Silicon Carbide MOSFETs
description Both large current capability and strong short-circuit (SC) ruggedness are necessary for 3.3 kV SiC MOSFETs to improve system efficiency and reduce costs in industrial and traction applications. In this paper, the effects of Junction Field Effect Transistor (JFET) region width and JFET doping (JD) on conduction and SC capability of the 3.3 kV planar-gate SiC MOSFETs are systematically investigated by experiments and simulations. When the JFET width (W<sub>JFET</sub>) of device without JD is smaller, the positive temperature coefficient of the special on-resistance (R<sub>on,SP</sub>) is larger. The JD is effective to improve the R<sub>on,SP</sub>, but excessive electric field in gate oxide induced by JD should be paid more attention. The optimization of W<sub>JFET</sub> can be used to improve both R<sub>on,SP</sub> and short circuit withstanding time (SCWT) at the same time. The drain-source current (I<sub>ds</sub>) and SCWT of the optimized devices are 50 A and more than <inline-formula> <tex-math notation="LaTeX">$20~{\mu }\text{s}$ </tex-math></inline-formula>, respectively, which is state-of-the-art for 3.3 kV SiC MOSFETs.
format article
author Ximing Chen
Xuan Li
Yafei Wang
Hong Chen
Caineng Zhou
Chao Zhang
Chengzhan Li
Xiaochuan Deng
Yudong Wu
Bo Zang
author_facet Ximing Chen
Xuan Li
Yafei Wang
Hong Chen
Caineng Zhou
Chao Zhang
Chengzhan Li
Xiaochuan Deng
Yudong Wu
Bo Zang
author_sort Ximing Chen
title Different JFET Designs on Conduction and Short-Circuit Capability for 3.3 kV Planar-Gate Silicon Carbide MOSFETs
title_short Different JFET Designs on Conduction and Short-Circuit Capability for 3.3 kV Planar-Gate Silicon Carbide MOSFETs
title_full Different JFET Designs on Conduction and Short-Circuit Capability for 3.3 kV Planar-Gate Silicon Carbide MOSFETs
title_fullStr Different JFET Designs on Conduction and Short-Circuit Capability for 3.3 kV Planar-Gate Silicon Carbide MOSFETs
title_full_unstemmed Different JFET Designs on Conduction and Short-Circuit Capability for 3.3 kV Planar-Gate Silicon Carbide MOSFETs
title_sort different jfet designs on conduction and short-circuit capability for 3.3 kv planar-gate silicon carbide mosfets
publisher IEEE
publishDate 2020
url https://doaj.org/article/71ecac5e3fd54c4b87308cab2710b01c
work_keys_str_mv AT ximingchen differentjfetdesignsonconductionandshortcircuitcapabilityfor33kvplanargatesiliconcarbidemosfets
AT xuanli differentjfetdesignsonconductionandshortcircuitcapabilityfor33kvplanargatesiliconcarbidemosfets
AT yafeiwang differentjfetdesignsonconductionandshortcircuitcapabilityfor33kvplanargatesiliconcarbidemosfets
AT hongchen differentjfetdesignsonconductionandshortcircuitcapabilityfor33kvplanargatesiliconcarbidemosfets
AT cainengzhou differentjfetdesignsonconductionandshortcircuitcapabilityfor33kvplanargatesiliconcarbidemosfets
AT chaozhang differentjfetdesignsonconductionandshortcircuitcapabilityfor33kvplanargatesiliconcarbidemosfets
AT chengzhanli differentjfetdesignsonconductionandshortcircuitcapabilityfor33kvplanargatesiliconcarbidemosfets
AT xiaochuandeng differentjfetdesignsonconductionandshortcircuitcapabilityfor33kvplanargatesiliconcarbidemosfets
AT yudongwu differentjfetdesignsonconductionandshortcircuitcapabilityfor33kvplanargatesiliconcarbidemosfets
AT bozang differentjfetdesignsonconductionandshortcircuitcapabilityfor33kvplanargatesiliconcarbidemosfets
_version_ 1718420674069921792