Dynamic Bayesian Networks for Evaluation of Granger Causal Relationships in Climate Reanalyses
Abstract We apply a Bayesian structure learning approach to study interactions between global climate modes, so illustrating its use as a framework for developing process‐based diagnostics with which to evaluate climate models. Homogeneous dynamic Bayesian network models are constructed for time ser...
Enregistré dans:
Auteurs principaux: | , |
---|---|
Format: | article |
Langue: | EN |
Publié: |
American Geophysical Union (AGU)
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/720c584245b34176b886e6888ef0141d |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|