Dynamic Bayesian Networks for Evaluation of Granger Causal Relationships in Climate Reanalyses
Abstract We apply a Bayesian structure learning approach to study interactions between global climate modes, so illustrating its use as a framework for developing process‐based diagnostics with which to evaluate climate models. Homogeneous dynamic Bayesian network models are constructed for time ser...
Guardado en:
Autores principales: | Dylan Harries, Terence J. O'Kane |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
American Geophysical Union (AGU)
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/720c584245b34176b886e6888ef0141d |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
The Relationship Between Convective Clustering and Mean Tropical Climate in Aquaplanet Simulations
por: Max Popp, et al.
Publicado: (2020) -
AMIP Simulations of a Global Model for Unified Weather‐Climate Forecast: Understanding Precipitation Characteristics and Sensitivity Over East Asia
por: Yi Zhang, et al.
Publicado: (2021) -
Analysis of and Solution to the Polar Numerical Noise Within the Shallow‐Water Model on the Latitude‐Longitude Grid
por: Jianghao Li, et al.
Publicado: (2020) -
Realistic Simulation of Tropical Atmospheric Gravity Waves Using Radar‐Observed Precipitation Rate and Echo Top Height
por: Martina Bramberger, et al.
Publicado: (2020) -
Changes to the Madden‐Julian Oscillation in Coupled and Uncoupled Aquaplanet Simulations With 4xCO2
por: Hien X. Bui, et al.
Publicado: (2020)