Conditional Deep Gaussian Processes: Multi-Fidelity Kernel Learning

Deep Gaussian Processes (DGPs) were proposed as an expressive Bayesian model capable of a mathematically grounded estimation of uncertainty. The expressivity of DPGs results from not only the compositional character but the distribution propagation within the hierarchy. Recently, it was pointed out...

Description complète

Enregistré dans:
Détails bibliographiques
Auteurs principaux: Chi-Ken Lu, Patrick Shafto
Format: article
Langue:EN
Publié: MDPI AG 2021
Sujets:
Q
Accès en ligne:https://doaj.org/article/7279de62091e4c17b2e769ba1c8ad513
Tags: Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!