Conditional Deep Gaussian Processes: Multi-Fidelity Kernel Learning

Deep Gaussian Processes (DGPs) were proposed as an expressive Bayesian model capable of a mathematically grounded estimation of uncertainty. The expressivity of DPGs results from not only the compositional character but the distribution propagation within the hierarchy. Recently, it was pointed out...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Chi-Ken Lu, Patrick Shafto
Formato: article
Lenguaje:EN
Publicado: MDPI AG 2021
Materias:
Q
Acceso en línea:https://doaj.org/article/7279de62091e4c17b2e769ba1c8ad513
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!