Conditional Deep Gaussian Processes: Multi-Fidelity Kernel Learning
Deep Gaussian Processes (DGPs) were proposed as an expressive Bayesian model capable of a mathematically grounded estimation of uncertainty. The expressivity of DPGs results from not only the compositional character but the distribution propagation within the hierarchy. Recently, it was pointed out...
Saved in:
| Main Authors: | , |
|---|---|
| Format: | article |
| Language: | EN |
| Published: |
MDPI AG
2021
|
| Subjects: | |
| Online Access: | https://doaj.org/article/7279de62091e4c17b2e769ba1c8ad513 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|