Conditional Deep Gaussian Processes: Multi-Fidelity Kernel Learning
Deep Gaussian Processes (DGPs) were proposed as an expressive Bayesian model capable of a mathematically grounded estimation of uncertainty. The expressivity of DPGs results from not only the compositional character but the distribution propagation within the hierarchy. Recently, it was pointed out...
Guardado en:
| Autores principales: | , |
|---|---|
| Formato: | article |
| Lenguaje: | EN |
| Publicado: |
MDPI AG
2021
|
| Materias: | |
| Acceso en línea: | https://doaj.org/article/7279de62091e4c17b2e769ba1c8ad513 |
| Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|