Targeted Quantification of Carbon Metabolites Identifies Metabolic Progression Markers and an Undiagnosed Case of SDH-Deficient Clear Cell Renal Cell Carcinoma in a German Cohort

Renal cell carcinoma (RCC) is among the 10 most common cancer entities and can be categorised into distinct subtypes by differential expression of Krebs cycle genes. We investigated the predictive value of several targeted metabolites with regards to tumour stages and patient survival in an unselect...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Doreen William, Kati Erdmann, Jonas Ottemöller, Anastasios Mangelis, Catleen Conrad, Mirko Peitzsch, Evelin Schröck, Graeme Eisenhofer, Aristeidis Zacharis, Susanne Füssel, Daniela Aust, Barbara Klink, Susan Richter
Formato: article
Lenguaje:EN
Publicado: MDPI AG 2021
Materias:
Acceso en línea:https://doaj.org/article/737c8718eab247f0abc5488e82bb525a
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:737c8718eab247f0abc5488e82bb525a
record_format dspace
spelling oai:doaj.org-article:737c8718eab247f0abc5488e82bb525a2021-11-25T18:20:45ZTargeted Quantification of Carbon Metabolites Identifies Metabolic Progression Markers and an Undiagnosed Case of SDH-Deficient Clear Cell Renal Cell Carcinoma in a German Cohort10.3390/metabo111107642218-1989https://doaj.org/article/737c8718eab247f0abc5488e82bb525a2021-11-01T00:00:00Zhttps://www.mdpi.com/2218-1989/11/11/764https://doaj.org/toc/2218-1989Renal cell carcinoma (RCC) is among the 10 most common cancer entities and can be categorised into distinct subtypes by differential expression of Krebs cycle genes. We investigated the predictive value of several targeted metabolites with regards to tumour stages and patient survival in an unselected cohort of 420 RCCs. Unsupervised hierarchical clustering of metabolite ratios identified two main clusters separated by α-ketoglutarate (α-KG) levels and sub-clusters with differential levels of the oncometabolite 2-hydroxyglutarate (2HG). Sub-clusters characterised by high 2HG were enriched in higher tumour stages, suggesting metabolite profiles might be suitable predictors of tumour stage or survival. Bootstrap forest models based on single metabolite signatures showed that lactate, 2HG, citrate, aspartate, asparagine, and glutamine better predicted the cancer-specific survival (CSS) of clear cell RCC patients, whereas succinate and α-ketoglutarate were better CSS predictors for papillary RCC patients. Additionally, this assay identifies rare cases of tumours with <i>SDHx</i> mutations, which are caused predominantly by germline mutations and which predispose to development of different neoplasms. Hence, analysis of selected metabolites should be further evaluated for potential utility in liquid biopsies, which can be obtained using less invasive methods and potentially facilitate disease monitoring for both patients and caregivers.Doreen WilliamKati ErdmannJonas OttemöllerAnastasios MangelisCatleen ConradMirko PeitzschEvelin SchröckGraeme EisenhoferAristeidis ZacharisSusanne FüsselDaniela AustBarbara KlinkSusan RichterMDPI AGarticleKrebs cyclemetabolic profilingrenal cell carcinomasubtypessurvival analysissuccinate dehydrogenase mutationsMicrobiologyQR1-502ENMetabolites, Vol 11, Iss 764, p 764 (2021)
institution DOAJ
collection DOAJ
language EN
topic Krebs cycle
metabolic profiling
renal cell carcinoma
subtypes
survival analysis
succinate dehydrogenase mutations
Microbiology
QR1-502
spellingShingle Krebs cycle
metabolic profiling
renal cell carcinoma
subtypes
survival analysis
succinate dehydrogenase mutations
Microbiology
QR1-502
Doreen William
Kati Erdmann
Jonas Ottemöller
Anastasios Mangelis
Catleen Conrad
Mirko Peitzsch
Evelin Schröck
Graeme Eisenhofer
Aristeidis Zacharis
Susanne Füssel
Daniela Aust
Barbara Klink
Susan Richter
Targeted Quantification of Carbon Metabolites Identifies Metabolic Progression Markers and an Undiagnosed Case of SDH-Deficient Clear Cell Renal Cell Carcinoma in a German Cohort
description Renal cell carcinoma (RCC) is among the 10 most common cancer entities and can be categorised into distinct subtypes by differential expression of Krebs cycle genes. We investigated the predictive value of several targeted metabolites with regards to tumour stages and patient survival in an unselected cohort of 420 RCCs. Unsupervised hierarchical clustering of metabolite ratios identified two main clusters separated by α-ketoglutarate (α-KG) levels and sub-clusters with differential levels of the oncometabolite 2-hydroxyglutarate (2HG). Sub-clusters characterised by high 2HG were enriched in higher tumour stages, suggesting metabolite profiles might be suitable predictors of tumour stage or survival. Bootstrap forest models based on single metabolite signatures showed that lactate, 2HG, citrate, aspartate, asparagine, and glutamine better predicted the cancer-specific survival (CSS) of clear cell RCC patients, whereas succinate and α-ketoglutarate were better CSS predictors for papillary RCC patients. Additionally, this assay identifies rare cases of tumours with <i>SDHx</i> mutations, which are caused predominantly by germline mutations and which predispose to development of different neoplasms. Hence, analysis of selected metabolites should be further evaluated for potential utility in liquid biopsies, which can be obtained using less invasive methods and potentially facilitate disease monitoring for both patients and caregivers.
format article
author Doreen William
Kati Erdmann
Jonas Ottemöller
Anastasios Mangelis
Catleen Conrad
Mirko Peitzsch
Evelin Schröck
Graeme Eisenhofer
Aristeidis Zacharis
Susanne Füssel
Daniela Aust
Barbara Klink
Susan Richter
author_facet Doreen William
Kati Erdmann
Jonas Ottemöller
Anastasios Mangelis
Catleen Conrad
Mirko Peitzsch
Evelin Schröck
Graeme Eisenhofer
Aristeidis Zacharis
Susanne Füssel
Daniela Aust
Barbara Klink
Susan Richter
author_sort Doreen William
title Targeted Quantification of Carbon Metabolites Identifies Metabolic Progression Markers and an Undiagnosed Case of SDH-Deficient Clear Cell Renal Cell Carcinoma in a German Cohort
title_short Targeted Quantification of Carbon Metabolites Identifies Metabolic Progression Markers and an Undiagnosed Case of SDH-Deficient Clear Cell Renal Cell Carcinoma in a German Cohort
title_full Targeted Quantification of Carbon Metabolites Identifies Metabolic Progression Markers and an Undiagnosed Case of SDH-Deficient Clear Cell Renal Cell Carcinoma in a German Cohort
title_fullStr Targeted Quantification of Carbon Metabolites Identifies Metabolic Progression Markers and an Undiagnosed Case of SDH-Deficient Clear Cell Renal Cell Carcinoma in a German Cohort
title_full_unstemmed Targeted Quantification of Carbon Metabolites Identifies Metabolic Progression Markers and an Undiagnosed Case of SDH-Deficient Clear Cell Renal Cell Carcinoma in a German Cohort
title_sort targeted quantification of carbon metabolites identifies metabolic progression markers and an undiagnosed case of sdh-deficient clear cell renal cell carcinoma in a german cohort
publisher MDPI AG
publishDate 2021
url https://doaj.org/article/737c8718eab247f0abc5488e82bb525a
work_keys_str_mv AT doreenwilliam targetedquantificationofcarbonmetabolitesidentifiesmetabolicprogressionmarkersandanundiagnosedcaseofsdhdeficientclearcellrenalcellcarcinomainagermancohort
AT katierdmann targetedquantificationofcarbonmetabolitesidentifiesmetabolicprogressionmarkersandanundiagnosedcaseofsdhdeficientclearcellrenalcellcarcinomainagermancohort
AT jonasottemoller targetedquantificationofcarbonmetabolitesidentifiesmetabolicprogressionmarkersandanundiagnosedcaseofsdhdeficientclearcellrenalcellcarcinomainagermancohort
AT anastasiosmangelis targetedquantificationofcarbonmetabolitesidentifiesmetabolicprogressionmarkersandanundiagnosedcaseofsdhdeficientclearcellrenalcellcarcinomainagermancohort
AT catleenconrad targetedquantificationofcarbonmetabolitesidentifiesmetabolicprogressionmarkersandanundiagnosedcaseofsdhdeficientclearcellrenalcellcarcinomainagermancohort
AT mirkopeitzsch targetedquantificationofcarbonmetabolitesidentifiesmetabolicprogressionmarkersandanundiagnosedcaseofsdhdeficientclearcellrenalcellcarcinomainagermancohort
AT evelinschrock targetedquantificationofcarbonmetabolitesidentifiesmetabolicprogressionmarkersandanundiagnosedcaseofsdhdeficientclearcellrenalcellcarcinomainagermancohort
AT graemeeisenhofer targetedquantificationofcarbonmetabolitesidentifiesmetabolicprogressionmarkersandanundiagnosedcaseofsdhdeficientclearcellrenalcellcarcinomainagermancohort
AT aristeidiszacharis targetedquantificationofcarbonmetabolitesidentifiesmetabolicprogressionmarkersandanundiagnosedcaseofsdhdeficientclearcellrenalcellcarcinomainagermancohort
AT susannefussel targetedquantificationofcarbonmetabolitesidentifiesmetabolicprogressionmarkersandanundiagnosedcaseofsdhdeficientclearcellrenalcellcarcinomainagermancohort
AT danielaaust targetedquantificationofcarbonmetabolitesidentifiesmetabolicprogressionmarkersandanundiagnosedcaseofsdhdeficientclearcellrenalcellcarcinomainagermancohort
AT barbaraklink targetedquantificationofcarbonmetabolitesidentifiesmetabolicprogressionmarkersandanundiagnosedcaseofsdhdeficientclearcellrenalcellcarcinomainagermancohort
AT susanrichter targetedquantificationofcarbonmetabolitesidentifiesmetabolicprogressionmarkersandanundiagnosedcaseofsdhdeficientclearcellrenalcellcarcinomainagermancohort
_version_ 1718411327060312064