A Haystack Heuristic for Autoimmune Disease Biomarker Discovery Using Next-Gen Immune Repertoire Sequencing Data

Abstract Large-scale DNA sequencing of immunological repertoires offers an opportunity for the discovery of novel biomarkers for autoimmune disease. Available bioinformatics techniques however, are not adequately suited for elucidating possible biomarker candidates from within large immunosequencing...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Leonard Apeltsin, Shengzhi Wang, H.-Christian von Büdingen, Marina Sirota
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2017
Materias:
R
Q
Acceso en línea:https://doaj.org/article/74579813ac674c16a7fc88407467467a
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:74579813ac674c16a7fc88407467467a
record_format dspace
spelling oai:doaj.org-article:74579813ac674c16a7fc88407467467a2021-12-02T16:06:49ZA Haystack Heuristic for Autoimmune Disease Biomarker Discovery Using Next-Gen Immune Repertoire Sequencing Data10.1038/s41598-017-04439-52045-2322https://doaj.org/article/74579813ac674c16a7fc88407467467a2017-07-01T00:00:00Zhttps://doi.org/10.1038/s41598-017-04439-5https://doaj.org/toc/2045-2322Abstract Large-scale DNA sequencing of immunological repertoires offers an opportunity for the discovery of novel biomarkers for autoimmune disease. Available bioinformatics techniques however, are not adequately suited for elucidating possible biomarker candidates from within large immunosequencing datasets due to unsatisfactory scalability and sensitivity. Here, we present the Haystack Heuristic, an algorithm customized to computationally extract disease-associated motifs from next-generation-sequenced repertoires by contrasting disease and healthy subjects. This technique employs a local-search graph-theory approach to discover novel motifs in patient data. We apply the Haystack Heuristic to nine million B-cell receptor sequences obtained from nearly 100 individuals in order to elucidate a new motif that is significantly associated with multiple sclerosis. Our results demonstrate the effectiveness of the Haystack Heuristic in computing possible biomarker candidates from high throughput sequencing data and could be generalized to other datasets.Leonard ApeltsinShengzhi WangH.-Christian von BüdingenMarina SirotaNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 7, Iss 1, Pp 1-11 (2017)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
Leonard Apeltsin
Shengzhi Wang
H.-Christian von Büdingen
Marina Sirota
A Haystack Heuristic for Autoimmune Disease Biomarker Discovery Using Next-Gen Immune Repertoire Sequencing Data
description Abstract Large-scale DNA sequencing of immunological repertoires offers an opportunity for the discovery of novel biomarkers for autoimmune disease. Available bioinformatics techniques however, are not adequately suited for elucidating possible biomarker candidates from within large immunosequencing datasets due to unsatisfactory scalability and sensitivity. Here, we present the Haystack Heuristic, an algorithm customized to computationally extract disease-associated motifs from next-generation-sequenced repertoires by contrasting disease and healthy subjects. This technique employs a local-search graph-theory approach to discover novel motifs in patient data. We apply the Haystack Heuristic to nine million B-cell receptor sequences obtained from nearly 100 individuals in order to elucidate a new motif that is significantly associated with multiple sclerosis. Our results demonstrate the effectiveness of the Haystack Heuristic in computing possible biomarker candidates from high throughput sequencing data and could be generalized to other datasets.
format article
author Leonard Apeltsin
Shengzhi Wang
H.-Christian von Büdingen
Marina Sirota
author_facet Leonard Apeltsin
Shengzhi Wang
H.-Christian von Büdingen
Marina Sirota
author_sort Leonard Apeltsin
title A Haystack Heuristic for Autoimmune Disease Biomarker Discovery Using Next-Gen Immune Repertoire Sequencing Data
title_short A Haystack Heuristic for Autoimmune Disease Biomarker Discovery Using Next-Gen Immune Repertoire Sequencing Data
title_full A Haystack Heuristic for Autoimmune Disease Biomarker Discovery Using Next-Gen Immune Repertoire Sequencing Data
title_fullStr A Haystack Heuristic for Autoimmune Disease Biomarker Discovery Using Next-Gen Immune Repertoire Sequencing Data
title_full_unstemmed A Haystack Heuristic for Autoimmune Disease Biomarker Discovery Using Next-Gen Immune Repertoire Sequencing Data
title_sort haystack heuristic for autoimmune disease biomarker discovery using next-gen immune repertoire sequencing data
publisher Nature Portfolio
publishDate 2017
url https://doaj.org/article/74579813ac674c16a7fc88407467467a
work_keys_str_mv AT leonardapeltsin ahaystackheuristicforautoimmunediseasebiomarkerdiscoveryusingnextgenimmunerepertoiresequencingdata
AT shengzhiwang ahaystackheuristicforautoimmunediseasebiomarkerdiscoveryusingnextgenimmunerepertoiresequencingdata
AT hchristianvonbudingen ahaystackheuristicforautoimmunediseasebiomarkerdiscoveryusingnextgenimmunerepertoiresequencingdata
AT marinasirota ahaystackheuristicforautoimmunediseasebiomarkerdiscoveryusingnextgenimmunerepertoiresequencingdata
AT leonardapeltsin haystackheuristicforautoimmunediseasebiomarkerdiscoveryusingnextgenimmunerepertoiresequencingdata
AT shengzhiwang haystackheuristicforautoimmunediseasebiomarkerdiscoveryusingnextgenimmunerepertoiresequencingdata
AT hchristianvonbudingen haystackheuristicforautoimmunediseasebiomarkerdiscoveryusingnextgenimmunerepertoiresequencingdata
AT marinasirota haystackheuristicforautoimmunediseasebiomarkerdiscoveryusingnextgenimmunerepertoiresequencingdata
_version_ 1718384848740024320