Self-Correction for Eye-In-Hand Robotic Grasping Using Action Learning

Robotic grasping for cluttered tasks and heterogeneous targets is not satisfied by the deep learning that has been developed in the last decade. The main problem lies in intelligence, which is stagnant, even though it has a high accuracy rate in usual environment; however, the cluttered grasping env...

Description complète

Enregistré dans:
Détails bibliographiques
Auteurs principaux: Muslikhin, Jenq-Ruey Horng, Szu-Yueh Yang, Ming-Shyan Wang
Format: article
Langue:EN
Publié: IEEE 2021
Sujets:
Accès en ligne:https://doaj.org/article/749f7dd7ae2046d8a728f4e0c6b8a779
Tags: Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!