Self-Correction for Eye-In-Hand Robotic Grasping Using Action Learning

Robotic grasping for cluttered tasks and heterogeneous targets is not satisfied by the deep learning that has been developed in the last decade. The main problem lies in intelligence, which is stagnant, even though it has a high accuracy rate in usual environment; however, the cluttered grasping env...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Muslikhin, Jenq-Ruey Horng, Szu-Yueh Yang, Ming-Shyan Wang
Formato: article
Lenguaje:EN
Publicado: IEEE 2021
Materias:
Acceso en línea:https://doaj.org/article/749f7dd7ae2046d8a728f4e0c6b8a779
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!