Self-Correction for Eye-In-Hand Robotic Grasping Using Action Learning
Robotic grasping for cluttered tasks and heterogeneous targets is not satisfied by the deep learning that has been developed in the last decade. The main problem lies in intelligence, which is stagnant, even though it has a high accuracy rate in usual environment; however, the cluttered grasping env...
Guardado en:
Autores principales: | Muslikhin, Jenq-Ruey Horng, Szu-Yueh Yang, Ming-Shyan Wang |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
IEEE
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/749f7dd7ae2046d8a728f4e0c6b8a779 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Object Detection Method for Grasping Robot Based on Improved YOLOv5
por: Qisong Song, et al.
Publicado: (2021) -
Pre-Grasp Manipulation Planning to Secure Space for Power Grasping
por: Inhyuk Baek, et al.
Publicado: (2021) -
Comply with Me: Using Design Manipulations to Affect Human–Robot Interaction in a COVID-19 Officer Robot Use Case
por: Ela Liberman-Pincu, et al.
Publicado: (2021) -
Minimizing error in robot arm based on design optimization for high stiffness to weight ratio.
por: Ahmed Abdul Hussain Ali
Publicado: (2008) -
Planning Fail-Safe Trajectories for Space Robotic Arms
por: Oliver Porges, et al.
Publicado: (2021)