Closed differential forms on moduli spaces of sheaves

Let X be a smooth projective variety, and let M be a moduli space of stable sheaves on X. For any flat family E of coherent sheaves on X parametrized by a smooth scheme Y , and for any integer m, with 1 ≤ m ≤ dim X, we construct a closed differential form Ω=Ω_E on Y with values in H^m(X, O_X). By u...

Description complète

Enregistré dans:
Détails bibliographiques
Auteur principal: Francesco Bottacin
Format: article
Langue:EN
FR
IT
Publié: Sapienza Università Editrice 2008
Sujets:
Accès en ligne:https://doaj.org/article/75bffad621b542abb08f3f1eb4677b67
Tags: Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
Description
Résumé:Let X be a smooth projective variety, and let M be a moduli space of stable sheaves on X. For any flat family E of coherent sheaves on X parametrized by a smooth scheme Y , and for any integer m, with 1 ≤ m ≤ dim X, we construct a closed differential form Ω=Ω_E on Y with values in H^m(X, O_X). By using the vector-valued differential form Ω we then prove that the choice of a (non-zero) differential m-form σ on X, σ ∈ H^0(X, Ω_m^X ), determines, in a natural way, a closed differential m-form Ω_σ on M.