Universal activation function for machine learning
Abstract This article proposes a universal activation function (UAF) that achieves near optimal performance in quantification, classification, and reinforcement learning (RL) problems. For any given problem, the gradient descent algorithms are able to evolve the UAF to a suitable activation function...
Enregistré dans:
Auteurs principaux: | Brosnan Yuen, Minh Tu Hoang, Xiaodai Dong, Tao Lu |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/761a26ef959a4ff2b37e7710b3ce6b10 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
An information-theoretic machine learning approach to expression QTL analysis.
par: Tao Huang, et autres
Publié: (2013) -
Molecular function recognition by supervised projection pursuit machine learning
par: Tyler Grear, et autres
Publié: (2021) -
Using human brain activity to guide machine learning
par: Ruth C. Fong, et autres
Publié: (2018) -
A machine learning method for the prediction of receptor activation in the simulation of synapses.
par: Jesus Montes, et autres
Publié: (2013) -
Influence of machine learning membership functions and degree of membership function on each input parameter for simulation of reactors
par: Rasool Pelalak, et autres
Publié: (2021)