Determining the effect of pH-shifting treatment on the solubility of pumpkin seed protein isolate

Pumpkin seed protein is a high-quality plant protein, which has all essential amino acids for the human body and can also supply essential amino acid histidine for children. When it is introduced to food products, it needs to meet some functional properties, such as solubility, emulsifying ability,...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Dan Gao, Anna Helikh, Zhenhua Duan
Formato: article
Lenguaje:EN
RU
UK
Publicado: PC Technology Center 2021
Materias:
Acceso en línea:https://doaj.org/article/772ca9c736554ffcaba09fce6fa0f215
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Pumpkin seed protein is a high-quality plant protein, which has all essential amino acids for the human body and can also supply essential amino acid histidine for children. When it is introduced to food products, it needs to meet some functional properties, such as solubility, emulsifying ability, foaming ability, and so on. Among them, solubility is very important because it has a great influence on other functional properties of protein. In this study, pH-shifting treatment, which is a novel method to modify protein, is applied to improve the solubility of pumpkin seed protein isolate (PSPI). PSPI treated by pH-shifting treatment was investigated at different pH values (pH 2, pH 4, pH 6, pH 8, pH 10, and pH 12), which were labeled as PSPI 2, PSPI 4, PSPI 6, PSPI 8, PSPI 10, and PSPI 12, respectively. Compared to that of control PSPI (45.6 %), only the solubility of PSPI 8 (55.5 %) showed increased (p<0.05) value, while the solubility of PSPI 2 (13.7 %), PSPI 4 (10.8 %), PSPI 10 (41.8 %), and PSPI 12 (13.4 %) showed decreased (p<0.05) value. Then the average particle size, zeta potential of the soluble protein in PSPI were analyzed, and sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) was performed. PSPI 2, PSPI 4, and PSPI 12 showed decreased (p<0.05) average particle size after the pH-shifting process. And PSPI 2, and PSPI 12 showed decreased (p<0.05) zeta potential. While other samples didn’t show any significant difference in these two indicators. Besides, the molecular weight of the increased abundance of soluble protein bands was observed at 33 kDa and 25 kDa of PSPI 8. As the solubility of PSPI 8 increased (p<0.05) significantly, it might suggest the PSPI after pH-shifting treatment under pH 8 has more advantages to be used in the food industry