Genomics and Proteomics of Mycobacteriophage Patience, an Accidental Tourist in the <italic toggle="yes">Mycobacterium</italic> Neighborhood

ABSTRACT Newly emerging human viruses such as Ebola virus, severe acute respiratory syndrome (SARS) virus, and HIV likely originate within an extant population of viruses in nonhuman hosts and acquire the ability to infect and cause disease in humans. Although several mechanisms preventing viral inf...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Welkin H. Pope, Deborah Jacobs-Sera, Daniel A. Russell, Daniel H. F. Rubin, Afsana Kajee, Zama N. P. Msibi, Michelle H. Larsen, William R. Jacobs, Jeffrey G. Lawrence, Roger W. Hendrix, Graham F. Hatfull
Formato: article
Lenguaje:EN
Publicado: American Society for Microbiology 2014
Materias:
Acceso en línea:https://doaj.org/article/7866087a909b421888f6ab374fdbed2b
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:7866087a909b421888f6ab374fdbed2b
record_format dspace
spelling oai:doaj.org-article:7866087a909b421888f6ab374fdbed2b2021-11-15T15:47:03ZGenomics and Proteomics of Mycobacteriophage Patience, an Accidental Tourist in the <italic toggle="yes">Mycobacterium</italic> Neighborhood10.1128/mBio.02145-142150-7511https://doaj.org/article/7866087a909b421888f6ab374fdbed2b2014-12-01T00:00:00Zhttps://journals.asm.org/doi/10.1128/mBio.02145-14https://doaj.org/toc/2150-7511ABSTRACT Newly emerging human viruses such as Ebola virus, severe acute respiratory syndrome (SARS) virus, and HIV likely originate within an extant population of viruses in nonhuman hosts and acquire the ability to infect and cause disease in humans. Although several mechanisms preventing viral infection of particular hosts have been described, the mechanisms and constraints on viral host expansion are ill defined. We describe here mycobacteriophage Patience, a newly isolated phage recovered using Mycobacterium smegmatis mc2155 as a host. Patience has genomic features distinct from its M. smegmatis host, including a much lower GC content (50.3% versus 67.4%) and an abundance of codons that are rarely used in M. smegmatis. Nonetheless, it propagates well in M. smegmatis, and we demonstrate the use of mass spectrometry to show expression of over 75% of the predicted proteins, to identify new genes, to refine the genome annotation, and to estimate protein abundance. We propose that Patience evolved primarily among lower-GC hosts and that the disparities between its genomic profile and that of M. smegmatis presented only a minimal barrier to host expansion. Rapid adaptions to its new host include recent acquisition of higher-GC genes, expression of out-of-frame proteins within predicted genes, and codon selection among highly expressed genes toward the translational apparatus of its new host. IMPORTANCE The mycobacteriophage Patience genome has a notably lower GC content (50.3%) than its Mycobacterium smegmatis host (67.4%) and has markedly different codon usage biases. The viral genome has an abundance of codons that are rare in the host and are decoded by wobble tRNA pairing, although the phage grows well and expression of most of the genes is detected by mass spectrometry. Patience thus has the genomic profile of a virus that evolved primarily in one type of host genetic landscape (moderate-GC bacteria) but has found its way into a distinctly different high-GC environment. Although Patience genes are ill matched to the host expression apparatus, this is of little functional consequence and has not evidently imposed a barrier to migration across the microbial landscape. Interestingly, comparison of expression levels and codon usage profiles reveals evidence of codon selection as the genome evolves and adapts to its new environment.Welkin H. PopeDeborah Jacobs-SeraDaniel A. RussellDaniel H. F. RubinAfsana KajeeZama N. P. MsibiMichelle H. LarsenWilliam R. JacobsJeffrey G. LawrenceRoger W. HendrixGraham F. HatfullAmerican Society for MicrobiologyarticleMicrobiologyQR1-502ENmBio, Vol 5, Iss 6 (2014)
institution DOAJ
collection DOAJ
language EN
topic Microbiology
QR1-502
spellingShingle Microbiology
QR1-502
Welkin H. Pope
Deborah Jacobs-Sera
Daniel A. Russell
Daniel H. F. Rubin
Afsana Kajee
Zama N. P. Msibi
Michelle H. Larsen
William R. Jacobs
Jeffrey G. Lawrence
Roger W. Hendrix
Graham F. Hatfull
Genomics and Proteomics of Mycobacteriophage Patience, an Accidental Tourist in the <italic toggle="yes">Mycobacterium</italic> Neighborhood
description ABSTRACT Newly emerging human viruses such as Ebola virus, severe acute respiratory syndrome (SARS) virus, and HIV likely originate within an extant population of viruses in nonhuman hosts and acquire the ability to infect and cause disease in humans. Although several mechanisms preventing viral infection of particular hosts have been described, the mechanisms and constraints on viral host expansion are ill defined. We describe here mycobacteriophage Patience, a newly isolated phage recovered using Mycobacterium smegmatis mc2155 as a host. Patience has genomic features distinct from its M. smegmatis host, including a much lower GC content (50.3% versus 67.4%) and an abundance of codons that are rarely used in M. smegmatis. Nonetheless, it propagates well in M. smegmatis, and we demonstrate the use of mass spectrometry to show expression of over 75% of the predicted proteins, to identify new genes, to refine the genome annotation, and to estimate protein abundance. We propose that Patience evolved primarily among lower-GC hosts and that the disparities between its genomic profile and that of M. smegmatis presented only a minimal barrier to host expansion. Rapid adaptions to its new host include recent acquisition of higher-GC genes, expression of out-of-frame proteins within predicted genes, and codon selection among highly expressed genes toward the translational apparatus of its new host. IMPORTANCE The mycobacteriophage Patience genome has a notably lower GC content (50.3%) than its Mycobacterium smegmatis host (67.4%) and has markedly different codon usage biases. The viral genome has an abundance of codons that are rare in the host and are decoded by wobble tRNA pairing, although the phage grows well and expression of most of the genes is detected by mass spectrometry. Patience thus has the genomic profile of a virus that evolved primarily in one type of host genetic landscape (moderate-GC bacteria) but has found its way into a distinctly different high-GC environment. Although Patience genes are ill matched to the host expression apparatus, this is of little functional consequence and has not evidently imposed a barrier to migration across the microbial landscape. Interestingly, comparison of expression levels and codon usage profiles reveals evidence of codon selection as the genome evolves and adapts to its new environment.
format article
author Welkin H. Pope
Deborah Jacobs-Sera
Daniel A. Russell
Daniel H. F. Rubin
Afsana Kajee
Zama N. P. Msibi
Michelle H. Larsen
William R. Jacobs
Jeffrey G. Lawrence
Roger W. Hendrix
Graham F. Hatfull
author_facet Welkin H. Pope
Deborah Jacobs-Sera
Daniel A. Russell
Daniel H. F. Rubin
Afsana Kajee
Zama N. P. Msibi
Michelle H. Larsen
William R. Jacobs
Jeffrey G. Lawrence
Roger W. Hendrix
Graham F. Hatfull
author_sort Welkin H. Pope
title Genomics and Proteomics of Mycobacteriophage Patience, an Accidental Tourist in the <italic toggle="yes">Mycobacterium</italic> Neighborhood
title_short Genomics and Proteomics of Mycobacteriophage Patience, an Accidental Tourist in the <italic toggle="yes">Mycobacterium</italic> Neighborhood
title_full Genomics and Proteomics of Mycobacteriophage Patience, an Accidental Tourist in the <italic toggle="yes">Mycobacterium</italic> Neighborhood
title_fullStr Genomics and Proteomics of Mycobacteriophage Patience, an Accidental Tourist in the <italic toggle="yes">Mycobacterium</italic> Neighborhood
title_full_unstemmed Genomics and Proteomics of Mycobacteriophage Patience, an Accidental Tourist in the <italic toggle="yes">Mycobacterium</italic> Neighborhood
title_sort genomics and proteomics of mycobacteriophage patience, an accidental tourist in the <italic toggle="yes">mycobacterium</italic> neighborhood
publisher American Society for Microbiology
publishDate 2014
url https://doaj.org/article/7866087a909b421888f6ab374fdbed2b
work_keys_str_mv AT welkinhpope genomicsandproteomicsofmycobacteriophagepatienceanaccidentaltouristintheitalictoggleyesmycobacteriumitalicneighborhood
AT deborahjacobssera genomicsandproteomicsofmycobacteriophagepatienceanaccidentaltouristintheitalictoggleyesmycobacteriumitalicneighborhood
AT danielarussell genomicsandproteomicsofmycobacteriophagepatienceanaccidentaltouristintheitalictoggleyesmycobacteriumitalicneighborhood
AT danielhfrubin genomicsandproteomicsofmycobacteriophagepatienceanaccidentaltouristintheitalictoggleyesmycobacteriumitalicneighborhood
AT afsanakajee genomicsandproteomicsofmycobacteriophagepatienceanaccidentaltouristintheitalictoggleyesmycobacteriumitalicneighborhood
AT zamanpmsibi genomicsandproteomicsofmycobacteriophagepatienceanaccidentaltouristintheitalictoggleyesmycobacteriumitalicneighborhood
AT michellehlarsen genomicsandproteomicsofmycobacteriophagepatienceanaccidentaltouristintheitalictoggleyesmycobacteriumitalicneighborhood
AT williamrjacobs genomicsandproteomicsofmycobacteriophagepatienceanaccidentaltouristintheitalictoggleyesmycobacteriumitalicneighborhood
AT jeffreyglawrence genomicsandproteomicsofmycobacteriophagepatienceanaccidentaltouristintheitalictoggleyesmycobacteriumitalicneighborhood
AT rogerwhendrix genomicsandproteomicsofmycobacteriophagepatienceanaccidentaltouristintheitalictoggleyesmycobacteriumitalicneighborhood
AT grahamfhatfull genomicsandproteomicsofmycobacteriophagepatienceanaccidentaltouristintheitalictoggleyesmycobacteriumitalicneighborhood
_version_ 1718427526295977984