The effect of noise on the predictive limit of QSAR models
Abstract A key challenge in the field of Quantitative Structure Activity Relationships (QSAR) is how to effectively treat experimental error in the training and evaluation of computational models. It is often assumed in the field of QSAR that models cannot produce predictions which are more accurate...
Enregistré dans:
| Auteurs principaux: | Scott S. Kolmar, Christopher M. Grulke |
|---|---|
| Format: | article |
| Langue: | EN |
| Publié: |
BMC
2021
|
| Sujets: | |
| Accès en ligne: | https://doaj.org/article/78e54c4475464378b24bac9127e8e253 |
| Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Document similarity for error prediction
par: Péter Marjai, et autres
Publié: (2021) -
Predictive Maintenance for Switch Machine Based on Digital Twins
par: Jia Yang, et autres
Publié: (2021) -
THE EXPERT SYSTEM OF CONTROL AND KNOWLEDGE ASSESSMENT
par: V. Golovachyova, et autres
Publié: (2020) -
Pattern Recognition of Human Face With Photos Using KNN Algorithm
par: Dedy Kurniadi, et autres
Publié: (2021) -
Optimization and improvement of fake news detection using deep learning approaches for societal benefit
par: Tavishee Chauhan, M.E, et autres
Publié: (2021)