A geometric-information-enhanced crystal graph network for predicting properties of materials
Graph neural networks are an accurate machine learning-based approach for property prediction. Here, a geometric-information-enhanced crystal graph neural network is demonstrated, which accurately predicts the formation energy and band gap of crystalline materials.
Guardado en:
Autores principales: | , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/7942b7f2b0a14299851df024aa50898d |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|