A geometric-information-enhanced crystal graph network for predicting properties of materials

Graph neural networks are an accurate machine learning-based approach for property prediction. Here, a geometric-information-enhanced crystal graph neural network is demonstrated, which accurately predicts the formation energy and band gap of crystalline materials.

Guardado en:
Detalles Bibliográficos
Autores principales: Jiucheng Cheng, Chunkai Zhang, Lifeng Dong
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
Acceso en línea:https://doaj.org/article/7942b7f2b0a14299851df024aa50898d
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!