A geometric-information-enhanced crystal graph network for predicting properties of materials

Graph neural networks are an accurate machine learning-based approach for property prediction. Here, a geometric-information-enhanced crystal graph neural network is demonstrated, which accurately predicts the formation energy and band gap of crystalline materials.

Guardado en:
Detalles Bibliográficos
Autores principales: Jiucheng Cheng, Chunkai Zhang, Lifeng Dong
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
Acceso en línea:https://doaj.org/article/7942b7f2b0a14299851df024aa50898d
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:7942b7f2b0a14299851df024aa50898d
record_format dspace
spelling oai:doaj.org-article:7942b7f2b0a14299851df024aa50898d2021-12-02T14:58:46ZA geometric-information-enhanced crystal graph network for predicting properties of materials10.1038/s43246-021-00194-32662-4443https://doaj.org/article/7942b7f2b0a14299851df024aa50898d2021-09-01T00:00:00Zhttps://doi.org/10.1038/s43246-021-00194-3https://doaj.org/toc/2662-4443Graph neural networks are an accurate machine learning-based approach for property prediction. Here, a geometric-information-enhanced crystal graph neural network is demonstrated, which accurately predicts the formation energy and band gap of crystalline materials.Jiucheng ChengChunkai ZhangLifeng DongNature PortfolioarticleMaterials of engineering and construction. Mechanics of materialsTA401-492ENCommunications Materials, Vol 2, Iss 1, Pp 1-11 (2021)
institution DOAJ
collection DOAJ
language EN
topic Materials of engineering and construction. Mechanics of materials
TA401-492
spellingShingle Materials of engineering and construction. Mechanics of materials
TA401-492
Jiucheng Cheng
Chunkai Zhang
Lifeng Dong
A geometric-information-enhanced crystal graph network for predicting properties of materials
description Graph neural networks are an accurate machine learning-based approach for property prediction. Here, a geometric-information-enhanced crystal graph neural network is demonstrated, which accurately predicts the formation energy and band gap of crystalline materials.
format article
author Jiucheng Cheng
Chunkai Zhang
Lifeng Dong
author_facet Jiucheng Cheng
Chunkai Zhang
Lifeng Dong
author_sort Jiucheng Cheng
title A geometric-information-enhanced crystal graph network for predicting properties of materials
title_short A geometric-information-enhanced crystal graph network for predicting properties of materials
title_full A geometric-information-enhanced crystal graph network for predicting properties of materials
title_fullStr A geometric-information-enhanced crystal graph network for predicting properties of materials
title_full_unstemmed A geometric-information-enhanced crystal graph network for predicting properties of materials
title_sort geometric-information-enhanced crystal graph network for predicting properties of materials
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/7942b7f2b0a14299851df024aa50898d
work_keys_str_mv AT jiuchengcheng ageometricinformationenhancedcrystalgraphnetworkforpredictingpropertiesofmaterials
AT chunkaizhang ageometricinformationenhancedcrystalgraphnetworkforpredictingpropertiesofmaterials
AT lifengdong ageometricinformationenhancedcrystalgraphnetworkforpredictingpropertiesofmaterials
AT jiuchengcheng geometricinformationenhancedcrystalgraphnetworkforpredictingpropertiesofmaterials
AT chunkaizhang geometricinformationenhancedcrystalgraphnetworkforpredictingpropertiesofmaterials
AT lifengdong geometricinformationenhancedcrystalgraphnetworkforpredictingpropertiesofmaterials
_version_ 1718389273992888320