A geometric-information-enhanced crystal graph network for predicting properties of materials
Graph neural networks are an accurate machine learning-based approach for property prediction. Here, a geometric-information-enhanced crystal graph neural network is demonstrated, which accurately predicts the formation energy and band gap of crystalline materials.
Guardado en:
Autores principales: | , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/7942b7f2b0a14299851df024aa50898d |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:7942b7f2b0a14299851df024aa50898d |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:7942b7f2b0a14299851df024aa50898d2021-12-02T14:58:46ZA geometric-information-enhanced crystal graph network for predicting properties of materials10.1038/s43246-021-00194-32662-4443https://doaj.org/article/7942b7f2b0a14299851df024aa50898d2021-09-01T00:00:00Zhttps://doi.org/10.1038/s43246-021-00194-3https://doaj.org/toc/2662-4443Graph neural networks are an accurate machine learning-based approach for property prediction. Here, a geometric-information-enhanced crystal graph neural network is demonstrated, which accurately predicts the formation energy and band gap of crystalline materials.Jiucheng ChengChunkai ZhangLifeng DongNature PortfolioarticleMaterials of engineering and construction. Mechanics of materialsTA401-492ENCommunications Materials, Vol 2, Iss 1, Pp 1-11 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Materials of engineering and construction. Mechanics of materials TA401-492 |
spellingShingle |
Materials of engineering and construction. Mechanics of materials TA401-492 Jiucheng Cheng Chunkai Zhang Lifeng Dong A geometric-information-enhanced crystal graph network for predicting properties of materials |
description |
Graph neural networks are an accurate machine learning-based approach for property prediction. Here, a geometric-information-enhanced crystal graph neural network is demonstrated, which accurately predicts the formation energy and band gap of crystalline materials. |
format |
article |
author |
Jiucheng Cheng Chunkai Zhang Lifeng Dong |
author_facet |
Jiucheng Cheng Chunkai Zhang Lifeng Dong |
author_sort |
Jiucheng Cheng |
title |
A geometric-information-enhanced crystal graph network for predicting properties of materials |
title_short |
A geometric-information-enhanced crystal graph network for predicting properties of materials |
title_full |
A geometric-information-enhanced crystal graph network for predicting properties of materials |
title_fullStr |
A geometric-information-enhanced crystal graph network for predicting properties of materials |
title_full_unstemmed |
A geometric-information-enhanced crystal graph network for predicting properties of materials |
title_sort |
geometric-information-enhanced crystal graph network for predicting properties of materials |
publisher |
Nature Portfolio |
publishDate |
2021 |
url |
https://doaj.org/article/7942b7f2b0a14299851df024aa50898d |
work_keys_str_mv |
AT jiuchengcheng ageometricinformationenhancedcrystalgraphnetworkforpredictingpropertiesofmaterials AT chunkaizhang ageometricinformationenhancedcrystalgraphnetworkforpredictingpropertiesofmaterials AT lifengdong ageometricinformationenhancedcrystalgraphnetworkforpredictingpropertiesofmaterials AT jiuchengcheng geometricinformationenhancedcrystalgraphnetworkforpredictingpropertiesofmaterials AT chunkaizhang geometricinformationenhancedcrystalgraphnetworkforpredictingpropertiesofmaterials AT lifengdong geometricinformationenhancedcrystalgraphnetworkforpredictingpropertiesofmaterials |
_version_ |
1718389273992888320 |