A geometric-information-enhanced crystal graph network for predicting properties of materials
Graph neural networks are an accurate machine learning-based approach for property prediction. Here, a geometric-information-enhanced crystal graph neural network is demonstrated, which accurately predicts the formation energy and band gap of crystalline materials.
Guardado en:
Autores principales: | Jiucheng Cheng, Chunkai Zhang, Lifeng Dong |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/7942b7f2b0a14299851df024aa50898d |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Graph neural networks for an accurate and interpretable prediction of the properties of polycrystalline materials
por: Minyi Dai, et al.
Publicado: (2021) -
Atomistic Line Graph Neural Network for improved materials property predictions
por: Kamal Choudhary, et al.
Publicado: (2021) -
Benchmarking graph neural networks for materials chemistry
por: Victor Fung, et al.
Publicado: (2021) -
Predicting synthesizability of crystalline materials via deep learning
por: Ali Davariashtiyani, et al.
Publicado: (2021) -
Integrating multiple materials science projects in a single neural network
por: Kan Hatakeyama-Sato, et al.
Publicado: (2020)