Leveraging long short-term memory (LSTM)-based neural networks for modeling structure–property relationships of metamaterials from electromagnetic responses
Abstract We report a neural network model for predicting the electromagnetic response of mesoscale metamaterials as well as generate design parameters for a desired spectral behavior. Our approach entails treating spectral data as time-varying sequences and the inverse problem as a single-input mult...
Guardado en:
Autores principales: | , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/796cc93285054dd3ab74a27411802243 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|