Leveraging long short-term memory (LSTM)-based neural networks for modeling structure–property relationships of metamaterials from electromagnetic responses
Abstract We report a neural network model for predicting the electromagnetic response of mesoscale metamaterials as well as generate design parameters for a desired spectral behavior. Our approach entails treating spectral data as time-varying sequences and the inverse problem as a single-input mult...
Guardado en:
Autores principales: | Prajith Pillai, Parama Pal, Rinu Chacko, Deepak Jain, Beena Rai |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/796cc93285054dd3ab74a27411802243 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Software defect prediction using hybrid model (CBIL) of convolutional neural network (CNN) and bidirectional long short-term memory (Bi-LSTM)
por: Ahmed Bahaa Farid, et al.
Publicado: (2021) -
Short-term prediction of wind power density using convolutional LSTM network
por: Gupta Deepak, et al.
Publicado: (2021) -
Leveraging neural properties to inform stimulation
por: Hayriye Cagnan
Publicado: (2021) -
Efficient radiational outcoupling of electromagnetic energy from hyperbolic metamaterial resonators
por: Ildar Yusupov, et al.
Publicado: (2020) -
Multi-Band Analogue Electromagnetically Induced Transparency in DoubleTuned Metamaterials
por: Wei Huang, et al.
Publicado: (2021)