Learning interpretable cellular and gene signature embeddings from single-cell transcriptomic data
Computational single-cell RNA-seq analyses often face challenges in scalability, model interpretability, and confounders. Here, we show a new model to address these challenges by learning meaningful embeddings from the data that simultaneously refine gene signatures and cell functions in diverse con...
Enregistré dans:
Auteurs principaux: | , , , , |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/7990959eb2ba4fc09e678054e84e1c54 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|