Learning interpretable cellular and gene signature embeddings from single-cell transcriptomic data

Computational single-cell RNA-seq analyses often face challenges in scalability, model interpretability, and confounders. Here, we show a new model to address these challenges by learning meaningful embeddings from the data that simultaneously refine gene signatures and cell functions in diverse con...

Description complète

Enregistré dans:
Détails bibliographiques
Auteurs principaux: Yifan Zhao, Huiyu Cai, Zuobai Zhang, Jian Tang, Yue Li
Format: article
Langue:EN
Publié: Nature Portfolio 2021
Sujets:
Q
Accès en ligne:https://doaj.org/article/7990959eb2ba4fc09e678054e84e1c54
Tags: Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!