Learning interpretable cellular and gene signature embeddings from single-cell transcriptomic data
Computational single-cell RNA-seq analyses often face challenges in scalability, model interpretability, and confounders. Here, we show a new model to address these challenges by learning meaningful embeddings from the data that simultaneously refine gene signatures and cell functions in diverse con...
Guardado en:
Autores principales: | , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/7990959eb2ba4fc09e678054e84e1c54 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:7990959eb2ba4fc09e678054e84e1c54 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:7990959eb2ba4fc09e678054e84e1c542021-12-02T17:19:39ZLearning interpretable cellular and gene signature embeddings from single-cell transcriptomic data10.1038/s41467-021-25534-22041-1723https://doaj.org/article/7990959eb2ba4fc09e678054e84e1c542021-09-01T00:00:00Zhttps://doi.org/10.1038/s41467-021-25534-2https://doaj.org/toc/2041-1723Computational single-cell RNA-seq analyses often face challenges in scalability, model interpretability, and confounders. Here, we show a new model to address these challenges by learning meaningful embeddings from the data that simultaneously refine gene signatures and cell functions in diverse conditions.Yifan ZhaoHuiyu CaiZuobai ZhangJian TangYue LiNature PortfolioarticleScienceQENNature Communications, Vol 12, Iss 1, Pp 1-15 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Science Q |
spellingShingle |
Science Q Yifan Zhao Huiyu Cai Zuobai Zhang Jian Tang Yue Li Learning interpretable cellular and gene signature embeddings from single-cell transcriptomic data |
description |
Computational single-cell RNA-seq analyses often face challenges in scalability, model interpretability, and confounders. Here, we show a new model to address these challenges by learning meaningful embeddings from the data that simultaneously refine gene signatures and cell functions in diverse conditions. |
format |
article |
author |
Yifan Zhao Huiyu Cai Zuobai Zhang Jian Tang Yue Li |
author_facet |
Yifan Zhao Huiyu Cai Zuobai Zhang Jian Tang Yue Li |
author_sort |
Yifan Zhao |
title |
Learning interpretable cellular and gene signature embeddings from single-cell transcriptomic data |
title_short |
Learning interpretable cellular and gene signature embeddings from single-cell transcriptomic data |
title_full |
Learning interpretable cellular and gene signature embeddings from single-cell transcriptomic data |
title_fullStr |
Learning interpretable cellular and gene signature embeddings from single-cell transcriptomic data |
title_full_unstemmed |
Learning interpretable cellular and gene signature embeddings from single-cell transcriptomic data |
title_sort |
learning interpretable cellular and gene signature embeddings from single-cell transcriptomic data |
publisher |
Nature Portfolio |
publishDate |
2021 |
url |
https://doaj.org/article/7990959eb2ba4fc09e678054e84e1c54 |
work_keys_str_mv |
AT yifanzhao learninginterpretablecellularandgenesignatureembeddingsfromsinglecelltranscriptomicdata AT huiyucai learninginterpretablecellularandgenesignatureembeddingsfromsinglecelltranscriptomicdata AT zuobaizhang learninginterpretablecellularandgenesignatureembeddingsfromsinglecelltranscriptomicdata AT jiantang learninginterpretablecellularandgenesignatureembeddingsfromsinglecelltranscriptomicdata AT yueli learninginterpretablecellularandgenesignatureembeddingsfromsinglecelltranscriptomicdata |
_version_ |
1718381034411655168 |