Learning interpretable cellular and gene signature embeddings from single-cell transcriptomic data

Computational single-cell RNA-seq analyses often face challenges in scalability, model interpretability, and confounders. Here, we show a new model to address these challenges by learning meaningful embeddings from the data that simultaneously refine gene signatures and cell functions in diverse con...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Yifan Zhao, Huiyu Cai, Zuobai Zhang, Jian Tang, Yue Li
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
Q
Acceso en línea:https://doaj.org/article/7990959eb2ba4fc09e678054e84e1c54
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:7990959eb2ba4fc09e678054e84e1c54
record_format dspace
spelling oai:doaj.org-article:7990959eb2ba4fc09e678054e84e1c542021-12-02T17:19:39ZLearning interpretable cellular and gene signature embeddings from single-cell transcriptomic data10.1038/s41467-021-25534-22041-1723https://doaj.org/article/7990959eb2ba4fc09e678054e84e1c542021-09-01T00:00:00Zhttps://doi.org/10.1038/s41467-021-25534-2https://doaj.org/toc/2041-1723Computational single-cell RNA-seq analyses often face challenges in scalability, model interpretability, and confounders. Here, we show a new model to address these challenges by learning meaningful embeddings from the data that simultaneously refine gene signatures and cell functions in diverse conditions.Yifan ZhaoHuiyu CaiZuobai ZhangJian TangYue LiNature PortfolioarticleScienceQENNature Communications, Vol 12, Iss 1, Pp 1-15 (2021)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
Yifan Zhao
Huiyu Cai
Zuobai Zhang
Jian Tang
Yue Li
Learning interpretable cellular and gene signature embeddings from single-cell transcriptomic data
description Computational single-cell RNA-seq analyses often face challenges in scalability, model interpretability, and confounders. Here, we show a new model to address these challenges by learning meaningful embeddings from the data that simultaneously refine gene signatures and cell functions in diverse conditions.
format article
author Yifan Zhao
Huiyu Cai
Zuobai Zhang
Jian Tang
Yue Li
author_facet Yifan Zhao
Huiyu Cai
Zuobai Zhang
Jian Tang
Yue Li
author_sort Yifan Zhao
title Learning interpretable cellular and gene signature embeddings from single-cell transcriptomic data
title_short Learning interpretable cellular and gene signature embeddings from single-cell transcriptomic data
title_full Learning interpretable cellular and gene signature embeddings from single-cell transcriptomic data
title_fullStr Learning interpretable cellular and gene signature embeddings from single-cell transcriptomic data
title_full_unstemmed Learning interpretable cellular and gene signature embeddings from single-cell transcriptomic data
title_sort learning interpretable cellular and gene signature embeddings from single-cell transcriptomic data
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/7990959eb2ba4fc09e678054e84e1c54
work_keys_str_mv AT yifanzhao learninginterpretablecellularandgenesignatureembeddingsfromsinglecelltranscriptomicdata
AT huiyucai learninginterpretablecellularandgenesignatureembeddingsfromsinglecelltranscriptomicdata
AT zuobaizhang learninginterpretablecellularandgenesignatureembeddingsfromsinglecelltranscriptomicdata
AT jiantang learninginterpretablecellularandgenesignatureembeddingsfromsinglecelltranscriptomicdata
AT yueli learninginterpretablecellularandgenesignatureembeddingsfromsinglecelltranscriptomicdata
_version_ 1718381034411655168