Oversampling Imbalanced Data Based on Convergent WGAN for Network Threat Detection
Class imbalance is a common problem in network threat detection. Oversampling the minority class is regarded as a popular countermeasure by generating enough new minority samples. Generative adversarial network (GAN) is a typical generative model that can generate any number of artificial minority s...
Enregistré dans:
Auteurs principaux: | Yanping Xu, Xiaoyu Zhang, Zhenliang Qiu, Xia Zhang, Jian Qiu, Hua Zhang |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Hindawi-Wiley
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/7a3475a20f2243a9be0d3e6b5809238a |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
An oversampling method for multi-class imbalanced data based on composite weights.
par: Mingyang Deng, et autres
Publié: (2021) -
An oversampling method for multi-class imbalanced data based on composite weights
par: Mingyang Deng, et autres
Publié: (2021) -
A Novel Oversampling Method for Imbalanced Datasets Based on Density Peaks Clustering
par: Jie Cao*, et autres
Publié: (2021) -
Economic Growth Prediction Algorithm of Coastal Area Based on Impulse Response Function
par: Qiu Rong-Shan, et autres
Publié: (2021) -
Improving the Accuracy of Network Intrusion Detection with Causal Machine Learning
par: Zengri Zeng, et autres
Publié: (2021)