Applied random forest for parameter sensitivity of low salinity water Injection (LSWI) implementation on carbonate reservoir
This study applied a Machine Learning Algorithm based on Random Forest Regression for eliminating the insignificant parameter and evaluating the correlation between each parameter and response parameter on the LSWI process. 1000 experimental designs of LSWI parameters, Reservoir & Injection...
Enregistré dans:
Auteurs principaux: | Fiki Hidayat, T. Mhd. Sofyan Astsauri |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Elsevier
2022
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/7a59ded17f7046b4944d61dbcc252692 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Geochemical evaluation of low salinity hot water injection to enhance heavy oil recovery from carbonate reservoirs
par: Ji Ho Lee, et autres
Publié: (2018) -
Strategy of water-flooding enhancement for low-permeable polymictic reservoirs
par: Palyanitsina Aleksandra, et autres
Publié: (2021) -
Efficiency of enhanced oil recovery by injection of low-salinity water in barium-containing carbonate reservoirs
par: Hyemin Park, et autres
Publié: (2018) -
Enhancing recovery and sensitivity studies in an unconventional tight gas condensate reservoir
par: Min Wang, et autres
Publié: (2018) -
Performance of low-salinity water flooding for enhanced oil recovery improved by SiO2 nanoparticles
par: Tangestani Ebrahim, et autres
Publié: (2019)