Automatic Segmentation of Pelvic Cancers Using Deep Learning: State-of-the-Art Approaches and Challenges
The recent rise of deep learning (DL) and its promising capabilities in capturing non-explicit detail from large datasets have attracted substantial research attention in the field of medical image processing. DL provides grounds for technological development of computer-aided diagnosis and segmenta...
Enregistré dans:
Auteurs principaux: | Reza Kalantar, Gigin Lin, Jessica M. Winfield, Christina Messiou, Susan Lalondrelle, Matthew D. Blackledge, Dow-Mu Koh |
---|---|
Format: | article |
Langue: | EN |
Publié: |
MDPI AG
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/7aff8e47b4f149db9b8f67a8f0fb6c4f |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Pelvic Congestion Syndrome: A Missed Opportunity
par: Claire Kaufman, et autres
Publié: (2021) -
A deep learning based automatic segmentation approach for anatomical structures in intensity modulation radiotherapy
par: Han Zhou, et autres
Publié: (2021) -
Deep Learning-Augmented Head and Neck Organs at Risk Segmentation From CT Volumes
par: Wei Wang, et autres
Publié: (2021) - Journal of endometriosis and pelvic pain disorders
-
Detection and Segmentation of Pelvic Bones Metastases in MRI Images for Patients With Prostate Cancer Based on Deep Learning
par: Xiang Liu, et autres
Publié: (2021)