Predicting carbon nanotube forest attributes and mechanical properties using simulated images and deep learning
Abstract Understanding and controlling the self-assembly of vertically oriented carbon nanotube (CNT) forests is essential for realizing their potential in myriad applications. The governing process–structure–property mechanisms are poorly understood, and the processing parameter space is far too va...
Guardado en:
Autores principales: | , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/7cbc035ed72342a18a4f677e7c46a9ae |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|