Predicting carbon nanotube forest attributes and mechanical properties using simulated images and deep learning

Abstract Understanding and controlling the self-assembly of vertically oriented carbon nanotube (CNT) forests is essential for realizing their potential in myriad applications. The governing process–structure–property mechanisms are poorly understood, and the processing parameter space is far too va...

Description complète

Enregistré dans:
Détails bibliographiques
Auteurs principaux: Taher Hajilounezhad, Rina Bao, Kannappan Palaniappan, Filiz Bunyak, Prasad Calyam, Matthew R. Maschmann
Format: article
Langue:EN
Publié: Nature Portfolio 2021
Sujets:
Accès en ligne:https://doaj.org/article/7cbc035ed72342a18a4f677e7c46a9ae
Tags: Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!