Predicting carbon nanotube forest attributes and mechanical properties using simulated images and deep learning
Abstract Understanding and controlling the self-assembly of vertically oriented carbon nanotube (CNT) forests is essential for realizing their potential in myriad applications. The governing process–structure–property mechanisms are poorly understood, and the processing parameter space is far too va...
Guardado en:
Autores principales: | Taher Hajilounezhad, Rina Bao, Kannappan Palaniappan, Filiz Bunyak, Prasad Calyam, Matthew R. Maschmann |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/7cbc035ed72342a18a4f677e7c46a9ae |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Structural and chemical mechanisms governing stability of inorganic Janus nanotubes
por: Felix T. Bölle, et al.
Publicado: (2021) -
Advanced machine learning decision policies for diameter control of carbon nanotubes
por: Rahul Rao, et al.
Publicado: (2021) -
Four-dimensional imaging of lattice dynamics using ab-initio simulation
por: Navdeep Rana, et al.
Publicado: (2021) -
Designing polymer nanocomposites with high energy density using machine learning
por: Zhong-Hui Shen, et al.
Publicado: (2021) -
A study of real-world micrograph data quality and machine learning model robustness
por: Xiaoting Zhong, et al.
Publicado: (2021)