Using multivariate regression model with least absolute shrinkage and selection operator (LASSO) to predict the incidence of Xerostomia after intensity-modulated radiotherapy for head and neck cancer.
<h4>Purpose</h4>The aim of this study was to develop a multivariate logistic regression model with least absolute shrinkage and selection operator (LASSO) to make valid predictions about the incidence of moderate-to-severe patient-rated xerostomia among head and neck cancer (HNC) patient...
Enregistré dans:
Auteurs principaux: | Tsair-Fwu Lee, Pei-Ju Chao, Hui-Min Ting, Liyun Chang, Yu-Jie Huang, Jia-Ming Wu, Hung-Yu Wang, Mong-Fong Horng, Chun-Ming Chang, Jen-Hong Lan, Ya-Yu Huang, Fu-Min Fang, Stephen Wan Leung |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Public Library of Science (PLoS)
2014
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/7cc338c7e96c40adb68d93ff2f34ced3 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Manejo actual de la xerostomía
par: Ulloa B,J Patricio, et autres
Publié: (2016) -
Latest Advancement in the Management of Xerostomia: A Review
par: Venetia Aranha, et autres
Publié: (2021) -
Minor Salivary Glands Morphology in Xerostomia Patients
par: Liquidato,Bianca Maria, et autres
Publié: (2006) -
LASSO and Bioinformatics Analysis in the Identification of Key Genes for Prognostic Genes of Gynecologic Cancer
par: Shao-Hua Yu, et autres
Publié: (2021) -
Lasso Proteins—Unifying Cysteine Knots and Miniproteins
par: Bartosz Ambroży Greń, et autres
Publié: (2021)