Blind source separation by multilayer neural network classifiers for spectrogram analysis
This paper describes a novel method for blind source separation using multilayer neural networks when an audio signal has been recorded in a room with reverberation or with moving signal sources. In conventional applications, speech-recognition specialists can identify the signal from a specific spe...
Enregistré dans:
Auteurs principaux: | Toshihiko SHIRAISHI, Tomoki DOURA |
---|---|
Format: | article |
Langue: | EN |
Publié: |
The Japan Society of Mechanical Engineers
2019
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/7de2a8f33f734966bd0437d08dd14fa8 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Bird Species Identification Using Spectrogram Based on Multi-Channel Fusion of DCNNs
par: Feiyu Zhang, et autres
Publié: (2021) -
Presentation Attack Detection on Limited-Resource Devices Using Deep Neural Classifiers Trained on Consistent Spectrogram Fragments
par: Kacper Kubicki, et autres
Publié: (2021) -
Generalized Spectrograms and t -Wigner Transforms
par: PAOLO,BOGGIATTO, et autres
Publié: (2010) -
Automatic Detection and Classification of Cough Events Based on Deep Learning
par: Hossein Tabatabaei Seyed Amir, et autres
Publié: (2020) -
Level of Vulnerability of Educational Institutions in Face El Nino Phenomenon and its Classification with the Neural Network
par: Hugo David Calderon Vilca, et autres
Publié: (2021)