Revealing the predictability of intrinsic structure in complex networks
The likelihood of linking within a complex network is of importance to solve real-world problems, but it is challenging to predict. Sun et al. show that the link predictability limit can be well estimated by measuring the shortest compression length of a network without a need of prediction algorith...
Enregistré dans:
Auteurs principaux: | Jiachen Sun, Ling Feng, Jiarong Xie, Xiao Ma, Dashun Wang, Yanqing Hu |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2020
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/7df6d84fc6ed41f38d5c66f17dc5138c |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Prediction of conotoxin type based on long short-term memory network
par: Feng Wang, et autres
Publié: (2021) -
Intrinsic motor network connectivity predicts corticospinal excitability
par: Laura Marzetti, et autres
Publié: (2021) -
Intrinsic brain network abnormalities in migraines without aura revealed in resting-state fMRI.
par: Ting Xue, et autres
Publié: (2012) -
Spreading predictability in complex networks
par: Na Zhao, et autres
Publié: (2021) -
On local intrinsic dimensionality of deformation in complex materials
par: Shuo Zhou, et autres
Publié: (2021)