Identifying and characterizing high-risk clusters in a heterogeneous ICU population with deep embedded clustering

Abstract Critically ill patients constitute a highly heterogeneous population, with seemingly distinct patients having similar outcomes, and patients with the same admission diagnosis having opposite clinical trajectories. We aimed to develop a machine learning methodology that identifies and provid...

Full description

Saved in:
Bibliographic Details
Main Authors: José Castela Forte, Galiya Yeshmagambetova, Maureen L. van der Grinten, Bart Hiemstra, Thomas Kaufmann, Ruben J. Eck, Frederik Keus, Anne H. Epema, Marco A. Wiering, Iwan C. C. van der Horst
Format: article
Language:EN
Published: Nature Portfolio 2021
Subjects:
R
Q
Online Access:https://doaj.org/article/7e1247669dad4ed396c906d967f51c73
Tags: Add Tag
No Tags, Be the first to tag this record!