Identifying and characterizing high-risk clusters in a heterogeneous ICU population with deep embedded clustering
Abstract Critically ill patients constitute a highly heterogeneous population, with seemingly distinct patients having similar outcomes, and patients with the same admission diagnosis having opposite clinical trajectories. We aimed to develop a machine learning methodology that identifies and provid...
Guardado en:
Autores principales: | José Castela Forte, Galiya Yeshmagambetova, Maureen L. van der Grinten, Bart Hiemstra, Thomas Kaufmann, Ruben J. Eck, Frederik Keus, Anne H. Epema, Marco A. Wiering, Iwan C. C. van der Horst |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/7e1247669dad4ed396c906d967f51c73 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Ensemble machine learning prediction and variable importance analysis of 5-year mortality after cardiac valve and CABG operations
por: José Castela Forte, et al.
Publicado: (2021) -
Hierarchical information clustering by means of topologically embedded graphs.
por: Won-Min Song, et al.
Publicado: (2012) -
Correspondence analysis, spectral clustering and graph embedding: applications to ecology and economic complexity
por: Alje van Dam, et al.
Publicado: (2021) -
Blended E-health module on return to work embedded in collaborative occupational health care for common mental disorders: design of a cluster randomized controlled trial
por: Volker D, et al.
Publicado: (2013) -
U-Vectors: Generating Clusterable Speaker Embedding from Unlabeled Data
por: Muhammad Firoz Mridha, et al.
Publicado: (2021)