Thinnest Covering of the Euclidean Plane with Incongruent Circles
In 1958 L. Fejes Tóth and J. Molnar proposed a conjecture about a lower bound for the thinnest covering of the plane by circles with arbitrary radii from a given interval of the reals. If only two kinds of radii can occur this conjecture was in essence proven by A. Florian in 1962, leaving the gener...
Enregistré dans:
Auteur principal: | Dorninger Dietmar |
---|---|
Format: | article |
Langue: | EN |
Publié: |
De Gruyter
2017
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/7e15c90564c74df4b50bffc4d661bd3d |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
On Glassey’s conjecture for semilinear wave equations in Friedmann–Lemaître–Robertson–Walker spacetime
par: Kimitoshi Tsutaya, et autres
Publié: (2021) -
On global classical solutions to one-dimensional compressible Navier–Stokes/Allen–Cahn system with density-dependent viscosity and vacuum
par: Menglong Su
Publié: (2021) -
The existence of solutions for Sturm–Liouville differential equation with random impulses and boundary value problems
par: Zihan Li, et autres
Publié: (2021) -
Products of Snowflaked Euclidean Lines Are Not Minimal for Looking Down
par: Joseph Matthieu, et autres
Publié: (2017) -
Entropy generation for MHD natural convection in enclosure with a micropolar fluid saturated porous medium with Al2O3Cu water hybrid nanofluid
par: A. Mahdy, et autres
Publié: (2021)