Effect of Probabilistic Similarity Measure on Metric-Based Few-Shot Classification
In developing a few-shot classification model using deep networks, the limited number of samples in each class causes difficulty in utilizing statistical characteristics of the class distributions. In this paper, we propose a method to treat this difficulty by combining a probabilistic similarity ba...
Guardado en:
Autores principales: | Youngjae Lee, Hyeyoung Park |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/7f50fb27736747cb881c6b3232758cdb |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Few-Shot Object Detection via Sample Processing
por: Honghui Xu, et al.
Publicado: (2021) -
Meta-Seg: A Generalized Meta-Learning Framework for Multi-Class Few-Shot Semantic Segmentation
por: Zhiying Cao, et al.
Publicado: (2019) -
Task-Adaptive Embedding Learning with Dynamic Kernel Fusion for Few-Shot Remote Sensing Scene Classification
por: Pei Zhang, et al.
Publicado: (2021) -
Few-shot cotton leaf spots disease classification based on metric learning
por: Xihuizi Liang
Publicado: (2021) -
Optimizing Few-Shot Learning Based on Variational Autoencoders
por: Ruoqi Wei, et al.
Publicado: (2021)