Memory Model for Morphological Semantics of Visual Stimuli Using Sparse Distributed Representation
Recent achievements on CNN (convolutional neural networks) and DNN (deep neural networks) researches provide a lot of practical applications on computer vision area. However, these approaches require construction of huge size of training data for learning process. This paper tries to find a way for...
Enregistré dans:
Auteurs principaux: | Kyuchang Kang, Changseok Bae |
---|---|
Format: | article |
Langue: | EN |
Publié: |
MDPI AG
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/7f53c8f0b66345fdbda50c48f3ba2abe |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Robust Motor Imagery Classification Using Sparse Representations and Grouping Structures
par: Vangelis P. Oikonomou, et autres
Publié: (2020) -
ECG-Based Identification of Sudden Cardiac Death through Sparse Representations
par: Josue R. Velázquez-González, et autres
Publié: (2021) -
Reduced-Reference Stereoscopic Image Quality Assessment Using Gradient Sparse Representation and Structural Degradation
par: Jian Ma, et autres
Publié: (2021) -
Online Fault Diagnosis for Photovoltaic Arrays Based on Fisher Discrimination Dictionary Learning for Sparse Representation
par: Peng Xi, et autres
Publié: (2021) -
Effect of Smoking-Related Visual and Auditory Stimuli on Attention Bias in Young People Who Smoke
par: Ceren OZERBIL, et autres
Publié: (2020)