Encoding and exploring latent design space of optimal material structures via a VAE-LSTM model

Variational autoencoders (VAE) are machine learning models that can extract low dimensional representations of data from datasets of high complexity and volume. Importantly, they can be used for generative purposes to reconstruct complex data, such as images, from a low dimensional encoding of only...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Andrew J. Lew, Markus J. Buehler
Formato: article
Lenguaje:EN
Publicado: Elsevier 2021
Materias:
T
Acceso en línea:https://doaj.org/article/7f81720314774945a003abb4058ec274
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!