Encoding and exploring latent design space of optimal material structures via a VAE-LSTM model
Variational autoencoders (VAE) are machine learning models that can extract low dimensional representations of data from datasets of high complexity and volume. Importantly, they can be used for generative purposes to reconstruct complex data, such as images, from a low dimensional encoding of only...
Guardado en:
Autores principales: | Andrew J. Lew, Markus J. Buehler |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/7f81720314774945a003abb4058ec274 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Editorial Board
Publicado: (2021) -
Editorial Board
Publicado: (2021) -
The both positive and negative effect of pre-strain on the mechanical response of extruded magnesium alloy
por: Abdul Malik, et al.
Publicado: (2021) -
Coupled multiresonators acoustic metamaterial for vibration suppression in civil engineering structures
por: Akintoye O. Oyelade, et al.
Publicado: (2021) -
Perturbations of the Depth of Liquid Penetration Into the Capillary During Bubble Departures
por: Dzienis Paweł
Publicado: (2021)