Artificial intelligence-assisted analysis of endoscopic retrograde cholangiopancreatography image for identifying ampulla and difficulty of selective cannulation
Abstract The advancement of artificial intelligence (AI) has facilitated its application in medical fields. However, there has been little research for AI-assisted endoscopy, despite the clinical significance of the efficiency and safety of cannulation in the endoscopic retrograde cholangiopancreato...
Guardado en:
Autores principales: | Taesung Kim, Jinhee Kim, Hyuk Soon Choi, Eun Sun Kim, Bora Keum, Yoon Tae Jeen, Hong Sik Lee, Hoon Jai Chun, Sung Yong Han, Dong Uk Kim, Soonwook Kwon, Jaegul Choo, Jae Min Lee |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/7faffbe01bd3449bbde1be6039f54e82 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
The radiation environment of anaesthesiologists in the endoscopic retrograde cholangiopancreatography room
por: Bora Lee, et al.
Publicado: (2019) -
Risk Factors for Post Endoscopic Retrograde Cholangiopancreatography Pancreatitis and Hyperamylasemia
por: J Shokry Shirvany,, et al.
Publicado: (2011) -
Recent advances in prevention and management of endoscopic retrograde cholangiopancreatography-related duodenal perforation
por: Guiying Zhu, et al.
Publicado: (2020) -
Missing Value Imputation of Time-Series Air-Quality Data via Deep Neural Networks
por: Taesung Kim, et al.
Publicado: (2021) -
Evaluation of bispectral index monitoring efficacy in endoscopic patients who underwent retrograde cholangiopancreatography and received sedoanalgesia
por: Ferda Inal, et al.
Publicado: (2020)