Artificial intelligence-assisted analysis of endoscopic retrograde cholangiopancreatography image for identifying ampulla and difficulty of selective cannulation
Abstract The advancement of artificial intelligence (AI) has facilitated its application in medical fields. However, there has been little research for AI-assisted endoscopy, despite the clinical significance of the efficiency and safety of cannulation in the endoscopic retrograde cholangiopancreato...
Enregistré dans:
Auteurs principaux: | Taesung Kim, Jinhee Kim, Hyuk Soon Choi, Eun Sun Kim, Bora Keum, Yoon Tae Jeen, Hong Sik Lee, Hoon Jai Chun, Sung Yong Han, Dong Uk Kim, Soonwook Kwon, Jaegul Choo, Jae Min Lee |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/7faffbe01bd3449bbde1be6039f54e82 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
The radiation environment of anaesthesiologists in the endoscopic retrograde cholangiopancreatography room
par: Bora Lee, et autres
Publié: (2019) -
Risk Factors for Post Endoscopic Retrograde Cholangiopancreatography Pancreatitis and Hyperamylasemia
par: J Shokry Shirvany,, et autres
Publié: (2011) -
Recent advances in prevention and management of endoscopic retrograde cholangiopancreatography-related duodenal perforation
par: Guiying Zhu, et autres
Publié: (2020) -
Missing Value Imputation of Time-Series Air-Quality Data via Deep Neural Networks
par: Taesung Kim, et autres
Publié: (2021) -
Evaluation of bispectral index monitoring efficacy in endoscopic patients who underwent retrograde cholangiopancreatography and received sedoanalgesia
par: Ferda Inal, et autres
Publié: (2020)