Teaching solid mechanics to artificial intelligence—a fast solver for heterogeneous materials
Abstract We propose a deep neural network (DNN) as a fast surrogate model for local stress calculations in inhomogeneous non-linear materials. We show that the DNN predicts the local stresses with 3.8% mean absolute percentage error (MAPE) for the case of heterogeneous elastic media and a mechanical...
Guardado en:
| Autores principales: | , , |
|---|---|
| Formato: | article |
| Lenguaje: | EN |
| Publicado: |
Nature Portfolio
2021
|
| Materias: | |
| Acceso en línea: | https://doaj.org/article/7ffda2b990bd48ada3fb0971fd99c195 |
| Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|