Teaching solid mechanics to artificial intelligence—a fast solver for heterogeneous materials
Abstract We propose a deep neural network (DNN) as a fast surrogate model for local stress calculations in inhomogeneous non-linear materials. We show that the DNN predicts the local stresses with 3.8% mean absolute percentage error (MAPE) for the case of heterogeneous elastic media and a mechanical...
Guardado en:
Autores principales: | Jaber Rezaei Mianroodi, Nima H. Siboni, Dierk Raabe |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/7ffda2b990bd48ada3fb0971fd99c195 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Research on Aerobics Training and Evaluation Method Based on Artificial Intelligence-Aided Modeling
por: Chen Chen
Publicado: (2021) -
A Study on the Impact of 3D Printing and Artificial Intelligence on Education and Learning Process
por: Hyunjin Chun
Publicado: (2021) -
Artificial Intelligence Applications in the New Model of Logistics Development Based on Wireless Communication Technology
por: Shuaiqi Wang
Publicado: (2021) -
Research on the Evaluation and Optimization Method of the Impact of Chorus Education on University Culture Based on Coevolution Model in the Background of Artificial Intelligence
por: Qingna Lin, et al.
Publicado: (2021) -
Segregation-assisted spinodal and transient spinodal phase separation at grain boundaries
por: Reza Darvishi Kamachali, et al.
Publicado: (2020)