Dynamics of proteins with different molecular structures under solution condition

Abstract Incoherent quasielastic neutron scattering (iQENS) is a fascinating technique for investigating the internal dynamics of protein. However, low flux of neutron beam, low signal to noise ratio of QENS spectrometers and unavailability of well-established analyzing method have been obstacles fo...

Description complète

Enregistré dans:
Détails bibliographiques
Auteurs principaux: Rintaro Inoue, Takashi Oda, Hiroshi Nakagawa, Taiki Tominaga, Tomohide Saio, Yukinobu Kawakita, Masahiro Shimizu, Aya Okuda, Ken Morishima, Nobuhiro Sato, Reiko Urade, Mamoru Sato, Masaaki Sugiyama
Format: article
Langue:EN
Publié: Nature Portfolio 2020
Sujets:
R
Q
Accès en ligne:https://doaj.org/article/802927b816be4ad28bcef6152cb0aa14
Tags: Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
Description
Résumé:Abstract Incoherent quasielastic neutron scattering (iQENS) is a fascinating technique for investigating the internal dynamics of protein. However, low flux of neutron beam, low signal to noise ratio of QENS spectrometers and unavailability of well-established analyzing method have been obstacles for studying internal dynamics under physiological condition (in solution). The recent progress of neutron source and spectrometer provide the fine iQENS profile with high statistics and as well the progress of computational technique enable us to quantitatively reveal the internal dynamic from the obtained iQENS profile. The internal dynamics of two proteins, globular domain protein (GDP) and intrinsically disordered protein (IDP) in solution, were measured with the state-of-the art QENS spectrometer and then revealed with the newly developed analyzing method. It was clarified that the average relaxation rate of IDP was larger than that of GDP and the fraction of mobile H atoms of IDP was also much higher than that of GDP. Combined with the structural analysis and the calculation of solvent accessible surface area of amino acid residue, it was concluded that the internal dynamics were related to the highly solvent exposed amino acid residues depending upon protein’s structure.