VESPER: global and local cryo-EM map alignment using local density vectors
Here, the authors present VESPER, a program for EM density map search and alignment. Using benchmark datasets, they demonstrate that VESPER performs accurate global and local alignments and comparisons of EM maps.
Enregistré dans:
Auteurs principaux: | Xusi Han, Genki Terashi, Charles Christoffer, Siyang Chen, Daisuke Kihara |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/80c1de7ec4114f6c9d64b4218118b846 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
De novo main-chain modeling for EM maps using MAINMAST
par: Genki Terashi, et autres
Publié: (2018) -
Detecting protein and DNA/RNA structures in cryo-EM maps of intermediate resolution using deep learning
par: Xiao Wang, et autres
Publié: (2021) -
Analyzing effect of quadruple multiple sequence alignments on deep learning based protein inter-residue distance prediction
par: Aashish Jain, et autres
Publié: (2021) -
Measuring local-directional resolution and local anisotropy in cryo-EM maps
par: Jose Luis Vilas, et autres
Publié: (2020) -
Elucidating the Beta-Diversity of the Microbiome: from Global Alignment to Local Alignment
par: Xiaoquan Su
Publié: (2021)