Health improvement framework for actionable treatment planning using a surrogate Bayesian model
Clinical decision-making regarding treatments based on personal characteristics leads to effective health improvements. Here, the authors introduce a modeling framework to evaluate the actionability of treatment pathways.
Guardado en:
Autores principales: | Kazuki Nakamura, Ryosuke Kojima, Eiichiro Uchino, Koh Ono, Motoko Yanagita, Koichi Murashita, Ken Itoh, Shigeyuki Nakaji, Yasushi Okuno |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/8121b781a8ec44169977c8ba8efbdc57 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Bayesian optimization with adaptive surrogate models for automated experimental design
por: Bowen Lei, et al.
Publicado: (2021) -
Extrapolative Bayesian Optimization with Gaussian Process and Neural Network Ensemble Surrogate Models
por: Yee-Fun Lim, et al.
Publicado: (2021) -
SURROGATE MOTHERHOOD AS AN OBJECT OF STATISTICAL RESEARCH
por: L. A. Davletshina, et al.
Publicado: (2020) -
Bayesian action-perception computational model: interaction of production and recognition of cursive letters.
por: Estelle Gilet, et al.
Publicado: (2011) -
Bayesian validation framework for dynamic epidemic models
por: Sayan Dasgupta, et al.
Publicado: (2021)