Limits of Risk Predictability in a Cascading Alternating Renewal Process Model
Abstract Most risk analysis models systematically underestimate the probability and impact of catastrophic events (e.g., economic crises, natural disasters, and terrorism) by not taking into account interconnectivity and interdependence of risks. To address this weakness, we propose the Cascading Al...
Guardado en:
Autores principales: | , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2017
|
Materias: | |
Acceso en línea: | https://doaj.org/article/8180f95868104db69c25cf4d78118e74 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:8180f95868104db69c25cf4d78118e74 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:8180f95868104db69c25cf4d78118e742021-12-02T11:50:57ZLimits of Risk Predictability in a Cascading Alternating Renewal Process Model10.1038/s41598-017-06873-x2045-2322https://doaj.org/article/8180f95868104db69c25cf4d78118e742017-07-01T00:00:00Zhttps://doi.org/10.1038/s41598-017-06873-xhttps://doaj.org/toc/2045-2322Abstract Most risk analysis models systematically underestimate the probability and impact of catastrophic events (e.g., economic crises, natural disasters, and terrorism) by not taking into account interconnectivity and interdependence of risks. To address this weakness, we propose the Cascading Alternating Renewal Process (CARP) to forecast interconnected global risks. However, assessments of the model’s prediction precision are limited by lack of sufficient ground truth data. Here, we establish prediction precision as a function of input data size by using alternative long ground truth data generated by simulations of the CARP model with known parameters. We illustrate the approach on a model of fires in artificial cities assembled from basic city blocks with diverse housing. The results confirm that parameter recovery variance exhibits power law decay as a function of the length of available ground truth data. Using CARP, we also demonstrate estimation using a disparate dataset that also has dependencies: real-world prediction precision for the global risk model based on the World Economic Forum Global Risk Report. We conclude that the CARP model is an efficient method for predicting catastrophic cascading events with potential applications to emerging local and global interconnected risks.Xin LinAlaa MoussawiGyorgy KornissJonathan Z. BakdashBoleslaw K. SzymanskiNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 7, Iss 1, Pp 1-11 (2017) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q Xin Lin Alaa Moussawi Gyorgy Korniss Jonathan Z. Bakdash Boleslaw K. Szymanski Limits of Risk Predictability in a Cascading Alternating Renewal Process Model |
description |
Abstract Most risk analysis models systematically underestimate the probability and impact of catastrophic events (e.g., economic crises, natural disasters, and terrorism) by not taking into account interconnectivity and interdependence of risks. To address this weakness, we propose the Cascading Alternating Renewal Process (CARP) to forecast interconnected global risks. However, assessments of the model’s prediction precision are limited by lack of sufficient ground truth data. Here, we establish prediction precision as a function of input data size by using alternative long ground truth data generated by simulations of the CARP model with known parameters. We illustrate the approach on a model of fires in artificial cities assembled from basic city blocks with diverse housing. The results confirm that parameter recovery variance exhibits power law decay as a function of the length of available ground truth data. Using CARP, we also demonstrate estimation using a disparate dataset that also has dependencies: real-world prediction precision for the global risk model based on the World Economic Forum Global Risk Report. We conclude that the CARP model is an efficient method for predicting catastrophic cascading events with potential applications to emerging local and global interconnected risks. |
format |
article |
author |
Xin Lin Alaa Moussawi Gyorgy Korniss Jonathan Z. Bakdash Boleslaw K. Szymanski |
author_facet |
Xin Lin Alaa Moussawi Gyorgy Korniss Jonathan Z. Bakdash Boleslaw K. Szymanski |
author_sort |
Xin Lin |
title |
Limits of Risk Predictability in a Cascading Alternating Renewal Process Model |
title_short |
Limits of Risk Predictability in a Cascading Alternating Renewal Process Model |
title_full |
Limits of Risk Predictability in a Cascading Alternating Renewal Process Model |
title_fullStr |
Limits of Risk Predictability in a Cascading Alternating Renewal Process Model |
title_full_unstemmed |
Limits of Risk Predictability in a Cascading Alternating Renewal Process Model |
title_sort |
limits of risk predictability in a cascading alternating renewal process model |
publisher |
Nature Portfolio |
publishDate |
2017 |
url |
https://doaj.org/article/8180f95868104db69c25cf4d78118e74 |
work_keys_str_mv |
AT xinlin limitsofriskpredictabilityinacascadingalternatingrenewalprocessmodel AT alaamoussawi limitsofriskpredictabilityinacascadingalternatingrenewalprocessmodel AT gyorgykorniss limitsofriskpredictabilityinacascadingalternatingrenewalprocessmodel AT jonathanzbakdash limitsofriskpredictabilityinacascadingalternatingrenewalprocessmodel AT boleslawkszymanski limitsofriskpredictabilityinacascadingalternatingrenewalprocessmodel |
_version_ |
1718395173896978432 |