Solution and Parameter Identification of a Fixed-Bed Reactor Model for Catalytic CO<sub>2</sub> Methanation Using Physics-Informed Neural Networks
In this study, we develop physics-informed neural networks (PINNs) to solve an isothermal fixed-bed (IFB) model for catalytic CO<sub>2</sub> methanation. The PINN includes a feed-forward artificial neural network (FF-ANN) and physics-informed constraints, such as governing equations, bou...
Enregistré dans:
Auteurs principaux: | , |
---|---|
Format: | article |
Langue: | EN |
Publié: |
MDPI AG
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/8254ad25d9df4ed28af83cf6d35c0818 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|