An inter-laboratory study to investigate the impact of the bioinformatics component on microbiome analysis using mock communities
Abstract Despite the advent of whole genome metagenomics, targeted approaches (such as 16S rRNA gene amplicon sequencing) continue to be valuable for determining the microbial composition of samples. Amplicon microbiome sequencing can be performed on clinical samples from a normally sterile site to...
Guardado en:
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/8468c62cda324455a0cd7a1fb1c847ee |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:8468c62cda324455a0cd7a1fb1c847ee |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:8468c62cda324455a0cd7a1fb1c847ee2021-12-02T16:51:26ZAn inter-laboratory study to investigate the impact of the bioinformatics component on microbiome analysis using mock communities10.1038/s41598-021-89881-22045-2322https://doaj.org/article/8468c62cda324455a0cd7a1fb1c847ee2021-05-01T00:00:00Zhttps://doi.org/10.1038/s41598-021-89881-2https://doaj.org/toc/2045-2322Abstract Despite the advent of whole genome metagenomics, targeted approaches (such as 16S rRNA gene amplicon sequencing) continue to be valuable for determining the microbial composition of samples. Amplicon microbiome sequencing can be performed on clinical samples from a normally sterile site to determine the aetiology of an infection (usually single pathogen identification) or samples from more complex niches such as human mucosa or environmental samples where multiple microorganisms need to be identified. The methodologies are frequently applied to determine both presence of micro-organisms and their quantity or relative abundance. There are a number of technical steps required to perform microbial community profiling, many of which may have appreciable precision and bias that impacts final results. In order for these methods to be applied with the greatest accuracy, comparative studies across different laboratories are warranted. In this study we explored the impact of the bioinformatic approaches taken in different laboratories on microbiome assessment using 16S rRNA gene amplicon sequencing results. Data were generated from two mock microbial community samples which were amplified using primer sets spanning five different variable regions of 16S rRNA genes. The PCR-sequencing analysis included three technical repeats of the process to determine the repeatability of their methods. Thirteen laboratories participated in the study, and each analysed the same FASTQ files using their choice of pipeline. This study captured the methods used and the resulting sequence annotation and relative abundance output from bioinformatic analyses. Results were compared to digital PCR assessment of the absolute abundance of each target representing each organism in the mock microbial community samples and also to analyses of shotgun metagenome sequence data. This ring trial demonstrates that the choice of bioinformatic analysis pipeline alone can result in different estimations of the composition of the microbiome when using 16S rRNA gene amplicon sequencing data. The study observed differences in terms of both presence and abundance of organisms and provides a resource for ensuring reproducible pipeline development and application. The observed differences were especially prevalent when using custom databases and applying high stringency operational taxonomic unit (OTU) cut-off limits. In order to apply sequencing approaches with greater accuracy, the impact of different analytical steps needs to be clearly delineated and solutions devised to harmonise microbiome analysis results.Denise M. O’SullivanRonan M. DoyleSasithon TemisakNicholas RedshawAlexandra S. WhaleGrace LoganJiabin HuangNicole FischerGregory C. A. AmosMark D. PrestonJulian R. MarchesiJosef WagnerJulian ParkhillYair MotroHubert DeniseRobert D. FinnKathryn A. HarrisGemma L. KayJustin O’GradyEmma Ransom-JonesHuihai WuEmma LaingDavid J. StudholmeErnest Diez BenaventeJody PhelanTaane G. ClarkJacob Moran-GiladJim F. HuggettNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 11, Iss 1, Pp 1-14 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q Denise M. O’Sullivan Ronan M. Doyle Sasithon Temisak Nicholas Redshaw Alexandra S. Whale Grace Logan Jiabin Huang Nicole Fischer Gregory C. A. Amos Mark D. Preston Julian R. Marchesi Josef Wagner Julian Parkhill Yair Motro Hubert Denise Robert D. Finn Kathryn A. Harris Gemma L. Kay Justin O’Grady Emma Ransom-Jones Huihai Wu Emma Laing David J. Studholme Ernest Diez Benavente Jody Phelan Taane G. Clark Jacob Moran-Gilad Jim F. Huggett An inter-laboratory study to investigate the impact of the bioinformatics component on microbiome analysis using mock communities |
description |
Abstract Despite the advent of whole genome metagenomics, targeted approaches (such as 16S rRNA gene amplicon sequencing) continue to be valuable for determining the microbial composition of samples. Amplicon microbiome sequencing can be performed on clinical samples from a normally sterile site to determine the aetiology of an infection (usually single pathogen identification) or samples from more complex niches such as human mucosa or environmental samples where multiple microorganisms need to be identified. The methodologies are frequently applied to determine both presence of micro-organisms and their quantity or relative abundance. There are a number of technical steps required to perform microbial community profiling, many of which may have appreciable precision and bias that impacts final results. In order for these methods to be applied with the greatest accuracy, comparative studies across different laboratories are warranted. In this study we explored the impact of the bioinformatic approaches taken in different laboratories on microbiome assessment using 16S rRNA gene amplicon sequencing results. Data were generated from two mock microbial community samples which were amplified using primer sets spanning five different variable regions of 16S rRNA genes. The PCR-sequencing analysis included three technical repeats of the process to determine the repeatability of their methods. Thirteen laboratories participated in the study, and each analysed the same FASTQ files using their choice of pipeline. This study captured the methods used and the resulting sequence annotation and relative abundance output from bioinformatic analyses. Results were compared to digital PCR assessment of the absolute abundance of each target representing each organism in the mock microbial community samples and also to analyses of shotgun metagenome sequence data. This ring trial demonstrates that the choice of bioinformatic analysis pipeline alone can result in different estimations of the composition of the microbiome when using 16S rRNA gene amplicon sequencing data. The study observed differences in terms of both presence and abundance of organisms and provides a resource for ensuring reproducible pipeline development and application. The observed differences were especially prevalent when using custom databases and applying high stringency operational taxonomic unit (OTU) cut-off limits. In order to apply sequencing approaches with greater accuracy, the impact of different analytical steps needs to be clearly delineated and solutions devised to harmonise microbiome analysis results. |
format |
article |
author |
Denise M. O’Sullivan Ronan M. Doyle Sasithon Temisak Nicholas Redshaw Alexandra S. Whale Grace Logan Jiabin Huang Nicole Fischer Gregory C. A. Amos Mark D. Preston Julian R. Marchesi Josef Wagner Julian Parkhill Yair Motro Hubert Denise Robert D. Finn Kathryn A. Harris Gemma L. Kay Justin O’Grady Emma Ransom-Jones Huihai Wu Emma Laing David J. Studholme Ernest Diez Benavente Jody Phelan Taane G. Clark Jacob Moran-Gilad Jim F. Huggett |
author_facet |
Denise M. O’Sullivan Ronan M. Doyle Sasithon Temisak Nicholas Redshaw Alexandra S. Whale Grace Logan Jiabin Huang Nicole Fischer Gregory C. A. Amos Mark D. Preston Julian R. Marchesi Josef Wagner Julian Parkhill Yair Motro Hubert Denise Robert D. Finn Kathryn A. Harris Gemma L. Kay Justin O’Grady Emma Ransom-Jones Huihai Wu Emma Laing David J. Studholme Ernest Diez Benavente Jody Phelan Taane G. Clark Jacob Moran-Gilad Jim F. Huggett |
author_sort |
Denise M. O’Sullivan |
title |
An inter-laboratory study to investigate the impact of the bioinformatics component on microbiome analysis using mock communities |
title_short |
An inter-laboratory study to investigate the impact of the bioinformatics component on microbiome analysis using mock communities |
title_full |
An inter-laboratory study to investigate the impact of the bioinformatics component on microbiome analysis using mock communities |
title_fullStr |
An inter-laboratory study to investigate the impact of the bioinformatics component on microbiome analysis using mock communities |
title_full_unstemmed |
An inter-laboratory study to investigate the impact of the bioinformatics component on microbiome analysis using mock communities |
title_sort |
inter-laboratory study to investigate the impact of the bioinformatics component on microbiome analysis using mock communities |
publisher |
Nature Portfolio |
publishDate |
2021 |
url |
https://doaj.org/article/8468c62cda324455a0cd7a1fb1c847ee |
work_keys_str_mv |
AT denisemosullivan aninterlaboratorystudytoinvestigatetheimpactofthebioinformaticscomponentonmicrobiomeanalysisusingmockcommunities AT ronanmdoyle aninterlaboratorystudytoinvestigatetheimpactofthebioinformaticscomponentonmicrobiomeanalysisusingmockcommunities AT sasithontemisak aninterlaboratorystudytoinvestigatetheimpactofthebioinformaticscomponentonmicrobiomeanalysisusingmockcommunities AT nicholasredshaw aninterlaboratorystudytoinvestigatetheimpactofthebioinformaticscomponentonmicrobiomeanalysisusingmockcommunities AT alexandraswhale aninterlaboratorystudytoinvestigatetheimpactofthebioinformaticscomponentonmicrobiomeanalysisusingmockcommunities AT gracelogan aninterlaboratorystudytoinvestigatetheimpactofthebioinformaticscomponentonmicrobiomeanalysisusingmockcommunities AT jiabinhuang aninterlaboratorystudytoinvestigatetheimpactofthebioinformaticscomponentonmicrobiomeanalysisusingmockcommunities AT nicolefischer aninterlaboratorystudytoinvestigatetheimpactofthebioinformaticscomponentonmicrobiomeanalysisusingmockcommunities AT gregorycaamos aninterlaboratorystudytoinvestigatetheimpactofthebioinformaticscomponentonmicrobiomeanalysisusingmockcommunities AT markdpreston aninterlaboratorystudytoinvestigatetheimpactofthebioinformaticscomponentonmicrobiomeanalysisusingmockcommunities AT julianrmarchesi aninterlaboratorystudytoinvestigatetheimpactofthebioinformaticscomponentonmicrobiomeanalysisusingmockcommunities AT josefwagner aninterlaboratorystudytoinvestigatetheimpactofthebioinformaticscomponentonmicrobiomeanalysisusingmockcommunities AT julianparkhill aninterlaboratorystudytoinvestigatetheimpactofthebioinformaticscomponentonmicrobiomeanalysisusingmockcommunities AT yairmotro aninterlaboratorystudytoinvestigatetheimpactofthebioinformaticscomponentonmicrobiomeanalysisusingmockcommunities AT hubertdenise aninterlaboratorystudytoinvestigatetheimpactofthebioinformaticscomponentonmicrobiomeanalysisusingmockcommunities AT robertdfinn aninterlaboratorystudytoinvestigatetheimpactofthebioinformaticscomponentonmicrobiomeanalysisusingmockcommunities AT kathrynaharris aninterlaboratorystudytoinvestigatetheimpactofthebioinformaticscomponentonmicrobiomeanalysisusingmockcommunities AT gemmalkay aninterlaboratorystudytoinvestigatetheimpactofthebioinformaticscomponentonmicrobiomeanalysisusingmockcommunities AT justinogrady aninterlaboratorystudytoinvestigatetheimpactofthebioinformaticscomponentonmicrobiomeanalysisusingmockcommunities AT emmaransomjones aninterlaboratorystudytoinvestigatetheimpactofthebioinformaticscomponentonmicrobiomeanalysisusingmockcommunities AT huihaiwu aninterlaboratorystudytoinvestigatetheimpactofthebioinformaticscomponentonmicrobiomeanalysisusingmockcommunities AT emmalaing aninterlaboratorystudytoinvestigatetheimpactofthebioinformaticscomponentonmicrobiomeanalysisusingmockcommunities AT davidjstudholme aninterlaboratorystudytoinvestigatetheimpactofthebioinformaticscomponentonmicrobiomeanalysisusingmockcommunities AT ernestdiezbenavente aninterlaboratorystudytoinvestigatetheimpactofthebioinformaticscomponentonmicrobiomeanalysisusingmockcommunities AT jodyphelan aninterlaboratorystudytoinvestigatetheimpactofthebioinformaticscomponentonmicrobiomeanalysisusingmockcommunities AT taanegclark aninterlaboratorystudytoinvestigatetheimpactofthebioinformaticscomponentonmicrobiomeanalysisusingmockcommunities AT jacobmorangilad aninterlaboratorystudytoinvestigatetheimpactofthebioinformaticscomponentonmicrobiomeanalysisusingmockcommunities AT jimfhuggett aninterlaboratorystudytoinvestigatetheimpactofthebioinformaticscomponentonmicrobiomeanalysisusingmockcommunities AT denisemosullivan interlaboratorystudytoinvestigatetheimpactofthebioinformaticscomponentonmicrobiomeanalysisusingmockcommunities AT ronanmdoyle interlaboratorystudytoinvestigatetheimpactofthebioinformaticscomponentonmicrobiomeanalysisusingmockcommunities AT sasithontemisak interlaboratorystudytoinvestigatetheimpactofthebioinformaticscomponentonmicrobiomeanalysisusingmockcommunities AT nicholasredshaw interlaboratorystudytoinvestigatetheimpactofthebioinformaticscomponentonmicrobiomeanalysisusingmockcommunities AT alexandraswhale interlaboratorystudytoinvestigatetheimpactofthebioinformaticscomponentonmicrobiomeanalysisusingmockcommunities AT gracelogan interlaboratorystudytoinvestigatetheimpactofthebioinformaticscomponentonmicrobiomeanalysisusingmockcommunities AT jiabinhuang interlaboratorystudytoinvestigatetheimpactofthebioinformaticscomponentonmicrobiomeanalysisusingmockcommunities AT nicolefischer interlaboratorystudytoinvestigatetheimpactofthebioinformaticscomponentonmicrobiomeanalysisusingmockcommunities AT gregorycaamos interlaboratorystudytoinvestigatetheimpactofthebioinformaticscomponentonmicrobiomeanalysisusingmockcommunities AT markdpreston interlaboratorystudytoinvestigatetheimpactofthebioinformaticscomponentonmicrobiomeanalysisusingmockcommunities AT julianrmarchesi interlaboratorystudytoinvestigatetheimpactofthebioinformaticscomponentonmicrobiomeanalysisusingmockcommunities AT josefwagner interlaboratorystudytoinvestigatetheimpactofthebioinformaticscomponentonmicrobiomeanalysisusingmockcommunities AT julianparkhill interlaboratorystudytoinvestigatetheimpactofthebioinformaticscomponentonmicrobiomeanalysisusingmockcommunities AT yairmotro interlaboratorystudytoinvestigatetheimpactofthebioinformaticscomponentonmicrobiomeanalysisusingmockcommunities AT hubertdenise interlaboratorystudytoinvestigatetheimpactofthebioinformaticscomponentonmicrobiomeanalysisusingmockcommunities AT robertdfinn interlaboratorystudytoinvestigatetheimpactofthebioinformaticscomponentonmicrobiomeanalysisusingmockcommunities AT kathrynaharris interlaboratorystudytoinvestigatetheimpactofthebioinformaticscomponentonmicrobiomeanalysisusingmockcommunities AT gemmalkay interlaboratorystudytoinvestigatetheimpactofthebioinformaticscomponentonmicrobiomeanalysisusingmockcommunities AT justinogrady interlaboratorystudytoinvestigatetheimpactofthebioinformaticscomponentonmicrobiomeanalysisusingmockcommunities AT emmaransomjones interlaboratorystudytoinvestigatetheimpactofthebioinformaticscomponentonmicrobiomeanalysisusingmockcommunities AT huihaiwu interlaboratorystudytoinvestigatetheimpactofthebioinformaticscomponentonmicrobiomeanalysisusingmockcommunities AT emmalaing interlaboratorystudytoinvestigatetheimpactofthebioinformaticscomponentonmicrobiomeanalysisusingmockcommunities AT davidjstudholme interlaboratorystudytoinvestigatetheimpactofthebioinformaticscomponentonmicrobiomeanalysisusingmockcommunities AT ernestdiezbenavente interlaboratorystudytoinvestigatetheimpactofthebioinformaticscomponentonmicrobiomeanalysisusingmockcommunities AT jodyphelan interlaboratorystudytoinvestigatetheimpactofthebioinformaticscomponentonmicrobiomeanalysisusingmockcommunities AT taanegclark interlaboratorystudytoinvestigatetheimpactofthebioinformaticscomponentonmicrobiomeanalysisusingmockcommunities AT jacobmorangilad interlaboratorystudytoinvestigatetheimpactofthebioinformaticscomponentonmicrobiomeanalysisusingmockcommunities AT jimfhuggett interlaboratorystudytoinvestigatetheimpactofthebioinformaticscomponentonmicrobiomeanalysisusingmockcommunities |
_version_ |
1718382929945559040 |