An Exploratory Approach to Deriving Nutrition Information of Restaurant Food from Crowdsourced Food Images: Case of Hartford
Deep learning models can recognize the food item in an image and derive their nutrition information, including calories, macronutrients (carbohydrates, fats, and proteins), and micronutrients (vitamins and minerals). This technology has yet to be implemented for the nutrition assessment of restauran...
Guardado en:
Autores principales: | Xiang Chen, Evelyn Johnson, Aditya Kulkarni, Caiwen Ding, Natalie Ranelli, Yanyan Chen, Ran Xu |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/8483ce4ee3624e2f8d0ddc8f6c08c300 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Food Away From Home and Self-Perceived Gastrointestinal Health
por: Jyh-Jou Chen, et al.
Publicado: (2021) -
Sociodemographic and health profile of clients of community restaurants of brazilian social programs
por: Branquinho S,Amanda, et al.
Publicado: (2015) -
Food traceability system as elevating good corporate social responsibility for fast-food restaurants
por: Yu-Ping Wei, et al.
Publicado: (2017) -
Analysis of fat, fatty acid profile, and salt content of Iranian restaurant foods during the COVID‐19 pandemic: Strengths, weaknesses, opportunities, and threats analysis
por: Fatemeh Mohammadi‐Nasrabadi, et al.
Publicado: (2021) -
A Machine Learning-Based Screening Test for Sarcopenic Dysphagia Using Image Recognition
por: Kotomi Sakai, et al.
Publicado: (2021)