Optimization of C-to-G base editors with sequence context preference predictable by machine learning methods
C->G transversions can be highly desirable editing outcomes. Here the authors optimise CGBEs and provide a deep learning model for predicting editing outcomes based on sequence context.
Enregistré dans:
Auteurs principaux: | , , , , , , , , , , , , , , , , |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/84852509bdb0448faac72ae929a50ecc |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|