Optimization of C-to-G base editors with sequence context preference predictable by machine learning methods

C->G transversions can be highly desirable editing outcomes. Here the authors optimise CGBEs and provide a deep learning model for predicting editing outcomes based on sequence context.

Guardado en:
Detalles Bibliográficos
Autores principales: Tanglong Yuan, Nana Yan, Tianyi Fei, Jitan Zheng, Juan Meng, Nana Li, Jing Liu, Haihang Zhang, Long Xie, Wenqin Ying, Di Li, Lei Shi, Yongsen Sun, Yongyao Li, Yixue Li, Yidi Sun, Erwei Zuo
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
Q
Acceso en línea:https://doaj.org/article/84852509bdb0448faac72ae929a50ecc
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:C->G transversions can be highly desirable editing outcomes. Here the authors optimise CGBEs and provide a deep learning model for predicting editing outcomes based on sequence context.